Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/recastnavigation/Recast/Source/RecastMeshDetail.cpp
9913 views
1
//
2
// Copyright (c) 2009-2010 Mikko Mononen [email protected]
3
//
4
// This software is provided 'as-is', without any express or implied
5
// warranty. In no event will the authors be held liable for any damages
6
// arising from the use of this software.
7
// Permission is granted to anyone to use this software for any purpose,
8
// including commercial applications, and to alter it and redistribute it
9
// freely, subject to the following restrictions:
10
// 1. The origin of this software must not be misrepresented; you must not
11
// claim that you wrote the original software. If you use this software
12
// in a product, an acknowledgment in the product documentation would be
13
// appreciated but is not required.
14
// 2. Altered source versions must be plainly marked as such, and must not be
15
// misrepresented as being the original software.
16
// 3. This notice may not be removed or altered from any source distribution.
17
//
18
19
#include <float.h>
20
#include <math.h>
21
#include <string.h>
22
#include <stdlib.h>
23
#include <stdio.h>
24
#include "Recast.h"
25
#include "RecastAlloc.h"
26
#include "RecastAssert.h"
27
28
29
static const unsigned RC_UNSET_HEIGHT = 0xffff;
30
31
struct rcHeightPatch
32
{
33
inline rcHeightPatch() : data(0), xmin(0), ymin(0), width(0), height(0) {}
34
inline ~rcHeightPatch() { rcFree(data); }
35
unsigned short* data;
36
int xmin, ymin, width, height;
37
};
38
39
40
inline float vdot2(const float* a, const float* b)
41
{
42
return a[0]*b[0] + a[2]*b[2];
43
}
44
45
inline float vdistSq2(const float* p, const float* q)
46
{
47
const float dx = q[0] - p[0];
48
const float dy = q[2] - p[2];
49
return dx*dx + dy*dy;
50
}
51
52
inline float vdist2(const float* p, const float* q)
53
{
54
return sqrtf(vdistSq2(p,q));
55
}
56
57
inline float vcross2(const float* p1, const float* p2, const float* p3)
58
{
59
const float u1 = p2[0] - p1[0];
60
const float v1 = p2[2] - p1[2];
61
const float u2 = p3[0] - p1[0];
62
const float v2 = p3[2] - p1[2];
63
return u1 * v2 - v1 * u2;
64
}
65
66
static bool circumCircle(const float* p1, const float* p2, const float* p3,
67
float* c, float& r)
68
{
69
static const float EPS = 1e-6f;
70
// Calculate the circle relative to p1, to avoid some precision issues.
71
const float v1[3] = {0,0,0};
72
float v2[3], v3[3];
73
rcVsub(v2, p2,p1);
74
rcVsub(v3, p3,p1);
75
76
const float cp = vcross2(v1, v2, v3);
77
if (fabsf(cp) > EPS)
78
{
79
const float v1Sq = vdot2(v1,v1);
80
const float v2Sq = vdot2(v2,v2);
81
const float v3Sq = vdot2(v3,v3);
82
c[0] = (v1Sq*(v2[2]-v3[2]) + v2Sq*(v3[2]-v1[2]) + v3Sq*(v1[2]-v2[2])) / (2*cp);
83
c[1] = 0;
84
c[2] = (v1Sq*(v3[0]-v2[0]) + v2Sq*(v1[0]-v3[0]) + v3Sq*(v2[0]-v1[0])) / (2*cp);
85
r = vdist2(c, v1);
86
rcVadd(c, c, p1);
87
return true;
88
}
89
90
rcVcopy(c, p1);
91
r = 0;
92
return false;
93
}
94
95
static float distPtTri(const float* p, const float* a, const float* b, const float* c)
96
{
97
float v0[3], v1[3], v2[3];
98
rcVsub(v0, c,a);
99
rcVsub(v1, b,a);
100
rcVsub(v2, p,a);
101
102
const float dot00 = vdot2(v0, v0);
103
const float dot01 = vdot2(v0, v1);
104
const float dot02 = vdot2(v0, v2);
105
const float dot11 = vdot2(v1, v1);
106
const float dot12 = vdot2(v1, v2);
107
108
// Compute barycentric coordinates
109
const float invDenom = 1.0f / (dot00 * dot11 - dot01 * dot01);
110
const float u = (dot11 * dot02 - dot01 * dot12) * invDenom;
111
float v = (dot00 * dot12 - dot01 * dot02) * invDenom;
112
113
// If point lies inside the triangle, return interpolated y-coord.
114
static const float EPS = 1e-4f;
115
if (u >= -EPS && v >= -EPS && (u+v) <= 1+EPS)
116
{
117
const float y = a[1] + v0[1]*u + v1[1]*v;
118
return fabsf(y-p[1]);
119
}
120
return FLT_MAX;
121
}
122
123
static float distancePtSeg(const float* pt, const float* p, const float* q)
124
{
125
float pqx = q[0] - p[0];
126
float pqy = q[1] - p[1];
127
float pqz = q[2] - p[2];
128
float dx = pt[0] - p[0];
129
float dy = pt[1] - p[1];
130
float dz = pt[2] - p[2];
131
float d = pqx*pqx + pqy*pqy + pqz*pqz;
132
float t = pqx*dx + pqy*dy + pqz*dz;
133
if (d > 0)
134
t /= d;
135
if (t < 0)
136
t = 0;
137
else if (t > 1)
138
t = 1;
139
140
dx = p[0] + t*pqx - pt[0];
141
dy = p[1] + t*pqy - pt[1];
142
dz = p[2] + t*pqz - pt[2];
143
144
return dx*dx + dy*dy + dz*dz;
145
}
146
147
static float distancePtSeg2d(const float* pt, const float* p, const float* q)
148
{
149
float pqx = q[0] - p[0];
150
float pqz = q[2] - p[2];
151
float dx = pt[0] - p[0];
152
float dz = pt[2] - p[2];
153
float d = pqx*pqx + pqz*pqz;
154
float t = pqx*dx + pqz*dz;
155
if (d > 0)
156
t /= d;
157
if (t < 0)
158
t = 0;
159
else if (t > 1)
160
t = 1;
161
162
dx = p[0] + t*pqx - pt[0];
163
dz = p[2] + t*pqz - pt[2];
164
165
return dx*dx + dz*dz;
166
}
167
168
static float distToTriMesh(const float* p, const float* verts, const int /*nverts*/, const int* tris, const int ntris)
169
{
170
float dmin = FLT_MAX;
171
for (int i = 0; i < ntris; ++i)
172
{
173
const float* va = &verts[tris[i*4+0]*3];
174
const float* vb = &verts[tris[i*4+1]*3];
175
const float* vc = &verts[tris[i*4+2]*3];
176
float d = distPtTri(p, va,vb,vc);
177
if (d < dmin)
178
dmin = d;
179
}
180
if (dmin == FLT_MAX) return -1;
181
return dmin;
182
}
183
184
static float distToPoly(int nvert, const float* verts, const float* p)
185
{
186
187
float dmin = FLT_MAX;
188
int i, j, c = 0;
189
for (i = 0, j = nvert-1; i < nvert; j = i++)
190
{
191
const float* vi = &verts[i*3];
192
const float* vj = &verts[j*3];
193
if (((vi[2] > p[2]) != (vj[2] > p[2])) &&
194
(p[0] < (vj[0]-vi[0]) * (p[2]-vi[2]) / (vj[2]-vi[2]) + vi[0]) )
195
c = !c;
196
dmin = rcMin(dmin, distancePtSeg2d(p, vj, vi));
197
}
198
return c ? -dmin : dmin;
199
}
200
201
202
static unsigned short getHeight(const float fx, const float fy, const float fz,
203
const float /*cs*/, const float ics, const float ch,
204
const int radius, const rcHeightPatch& hp)
205
{
206
int ix = (int)floorf(fx*ics + 0.01f);
207
int iz = (int)floorf(fz*ics + 0.01f);
208
ix = rcClamp(ix-hp.xmin, 0, hp.width - 1);
209
iz = rcClamp(iz-hp.ymin, 0, hp.height - 1);
210
unsigned short h = hp.data[ix+iz*hp.width];
211
if (h == RC_UNSET_HEIGHT)
212
{
213
// Special case when data might be bad.
214
// Walk adjacent cells in a spiral up to 'radius', and look
215
// for a pixel which has a valid height.
216
int x = 1, z = 0, dx = 1, dz = 0;
217
int maxSize = radius * 2 + 1;
218
int maxIter = maxSize * maxSize - 1;
219
220
int nextRingIterStart = 8;
221
int nextRingIters = 16;
222
223
float dmin = FLT_MAX;
224
for (int i = 0; i < maxIter; i++)
225
{
226
const int nx = ix + x;
227
const int nz = iz + z;
228
229
if (nx >= 0 && nz >= 0 && nx < hp.width && nz < hp.height)
230
{
231
const unsigned short nh = hp.data[nx + nz*hp.width];
232
if (nh != RC_UNSET_HEIGHT)
233
{
234
const float d = fabsf(nh*ch - fy);
235
if (d < dmin)
236
{
237
h = nh;
238
dmin = d;
239
}
240
}
241
}
242
243
// We are searching in a grid which looks approximately like this:
244
// __________
245
// |2 ______ 2|
246
// | |1 __ 1| |
247
// | | |__| | |
248
// | |______| |
249
// |__________|
250
// We want to find the best height as close to the center cell as possible. This means that
251
// if we find a height in one of the neighbor cells to the center, we don't want to
252
// expand further out than the 8 neighbors - we want to limit our search to the closest
253
// of these "rings", but the best height in the ring.
254
// For example, the center is just 1 cell. We checked that at the entrance to the function.
255
// The next "ring" contains 8 cells (marked 1 above). Those are all the neighbors to the center cell.
256
// The next one again contains 16 cells (marked 2). In general each ring has 8 additional cells, which
257
// can be thought of as adding 2 cells around the "center" of each side when we expand the ring.
258
// Here we detect if we are about to enter the next ring, and if we are and we have found
259
// a height, we abort the search.
260
if (i + 1 == nextRingIterStart)
261
{
262
if (h != RC_UNSET_HEIGHT)
263
break;
264
265
nextRingIterStart += nextRingIters;
266
nextRingIters += 8;
267
}
268
269
if ((x == z) || ((x < 0) && (x == -z)) || ((x > 0) && (x == 1 - z)))
270
{
271
int tmp = dx;
272
dx = -dz;
273
dz = tmp;
274
}
275
x += dx;
276
z += dz;
277
}
278
}
279
return h;
280
}
281
282
283
enum EdgeValues
284
{
285
EV_UNDEF = -1,
286
EV_HULL = -2
287
};
288
289
static int findEdge(const int* edges, int nedges, int s, int t)
290
{
291
for (int i = 0; i < nedges; i++)
292
{
293
const int* e = &edges[i*4];
294
if ((e[0] == s && e[1] == t) || (e[0] == t && e[1] == s))
295
return i;
296
}
297
return EV_UNDEF;
298
}
299
300
static int addEdge(rcContext* ctx, int* edges, int& nedges, const int maxEdges, int s, int t, int l, int r)
301
{
302
if (nedges >= maxEdges)
303
{
304
ctx->log(RC_LOG_ERROR, "addEdge: Too many edges (%d/%d).", nedges, maxEdges);
305
return EV_UNDEF;
306
}
307
308
// Add edge if not already in the triangulation.
309
int e = findEdge(edges, nedges, s, t);
310
if (e == EV_UNDEF)
311
{
312
int* edge = &edges[nedges*4];
313
edge[0] = s;
314
edge[1] = t;
315
edge[2] = l;
316
edge[3] = r;
317
return nedges++;
318
}
319
else
320
{
321
return EV_UNDEF;
322
}
323
}
324
325
static void updateLeftFace(int* e, int s, int t, int f)
326
{
327
if (e[0] == s && e[1] == t && e[2] == EV_UNDEF)
328
e[2] = f;
329
else if (e[1] == s && e[0] == t && e[3] == EV_UNDEF)
330
e[3] = f;
331
}
332
333
static int overlapSegSeg2d(const float* a, const float* b, const float* c, const float* d)
334
{
335
const float a1 = vcross2(a, b, d);
336
const float a2 = vcross2(a, b, c);
337
if (a1*a2 < 0.0f)
338
{
339
float a3 = vcross2(c, d, a);
340
float a4 = a3 + a2 - a1;
341
if (a3 * a4 < 0.0f)
342
return 1;
343
}
344
return 0;
345
}
346
347
static bool overlapEdges(const float* pts, const int* edges, int nedges, int s1, int t1)
348
{
349
for (int i = 0; i < nedges; ++i)
350
{
351
const int s0 = edges[i*4+0];
352
const int t0 = edges[i*4+1];
353
// Same or connected edges do not overlap.
354
if (s0 == s1 || s0 == t1 || t0 == s1 || t0 == t1)
355
continue;
356
if (overlapSegSeg2d(&pts[s0*3],&pts[t0*3], &pts[s1*3],&pts[t1*3]))
357
return true;
358
}
359
return false;
360
}
361
362
static void completeFacet(rcContext* ctx, const float* pts, int npts, int* edges, int& nedges, const int maxEdges, int& nfaces, int e)
363
{
364
static const float EPS = 1e-5f;
365
366
int* edge = &edges[e*4];
367
368
// Cache s and t.
369
int s,t;
370
if (edge[2] == EV_UNDEF)
371
{
372
s = edge[0];
373
t = edge[1];
374
}
375
else if (edge[3] == EV_UNDEF)
376
{
377
s = edge[1];
378
t = edge[0];
379
}
380
else
381
{
382
// Edge already completed.
383
return;
384
}
385
386
// Find best point on left of edge.
387
int pt = npts;
388
float c[3] = {0,0,0};
389
float r = -1;
390
for (int u = 0; u < npts; ++u)
391
{
392
if (u == s || u == t) continue;
393
if (vcross2(&pts[s*3], &pts[t*3], &pts[u*3]) > EPS)
394
{
395
if (r < 0)
396
{
397
// The circle is not updated yet, do it now.
398
pt = u;
399
circumCircle(&pts[s*3], &pts[t*3], &pts[u*3], c, r);
400
continue;
401
}
402
const float d = vdist2(c, &pts[u*3]);
403
const float tol = 0.001f;
404
if (d > r*(1+tol))
405
{
406
// Outside current circumcircle, skip.
407
continue;
408
}
409
else if (d < r*(1-tol))
410
{
411
// Inside safe circumcircle, update circle.
412
pt = u;
413
circumCircle(&pts[s*3], &pts[t*3], &pts[u*3], c, r);
414
}
415
else
416
{
417
// Inside epsilon circum circle, do extra tests to make sure the edge is valid.
418
// s-u and t-u cannot overlap with s-pt nor t-pt if they exists.
419
if (overlapEdges(pts, edges, nedges, s,u))
420
continue;
421
if (overlapEdges(pts, edges, nedges, t,u))
422
continue;
423
// Edge is valid.
424
pt = u;
425
circumCircle(&pts[s*3], &pts[t*3], &pts[u*3], c, r);
426
}
427
}
428
}
429
430
// Add new triangle or update edge info if s-t is on hull.
431
if (pt < npts)
432
{
433
// Update face information of edge being completed.
434
updateLeftFace(&edges[e*4], s, t, nfaces);
435
436
// Add new edge or update face info of old edge.
437
e = findEdge(edges, nedges, pt, s);
438
if (e == EV_UNDEF)
439
addEdge(ctx, edges, nedges, maxEdges, pt, s, nfaces, EV_UNDEF);
440
else
441
updateLeftFace(&edges[e*4], pt, s, nfaces);
442
443
// Add new edge or update face info of old edge.
444
e = findEdge(edges, nedges, t, pt);
445
if (e == EV_UNDEF)
446
addEdge(ctx, edges, nedges, maxEdges, t, pt, nfaces, EV_UNDEF);
447
else
448
updateLeftFace(&edges[e*4], t, pt, nfaces);
449
450
nfaces++;
451
}
452
else
453
{
454
updateLeftFace(&edges[e*4], s, t, EV_HULL);
455
}
456
}
457
458
static void delaunayHull(rcContext* ctx, const int npts, const float* pts,
459
const int nhull, const int* hull,
460
rcIntArray& tris, rcIntArray& edges)
461
{
462
int nfaces = 0;
463
int nedges = 0;
464
const int maxEdges = npts*10;
465
edges.resize(maxEdges*4);
466
467
for (int i = 0, j = nhull-1; i < nhull; j=i++)
468
addEdge(ctx, &edges[0], nedges, maxEdges, hull[j],hull[i], EV_HULL, EV_UNDEF);
469
470
int currentEdge = 0;
471
while (currentEdge < nedges)
472
{
473
if (edges[currentEdge*4+2] == EV_UNDEF)
474
completeFacet(ctx, pts, npts, &edges[0], nedges, maxEdges, nfaces, currentEdge);
475
if (edges[currentEdge*4+3] == EV_UNDEF)
476
completeFacet(ctx, pts, npts, &edges[0], nedges, maxEdges, nfaces, currentEdge);
477
currentEdge++;
478
}
479
480
// Create tris
481
tris.resize(nfaces*4);
482
for (int i = 0; i < nfaces*4; ++i)
483
tris[i] = -1;
484
485
for (int i = 0; i < nedges; ++i)
486
{
487
const int* e = &edges[i*4];
488
if (e[3] >= 0)
489
{
490
// Left face
491
int* t = &tris[e[3]*4];
492
if (t[0] == -1)
493
{
494
t[0] = e[0];
495
t[1] = e[1];
496
}
497
else if (t[0] == e[1])
498
t[2] = e[0];
499
else if (t[1] == e[0])
500
t[2] = e[1];
501
}
502
if (e[2] >= 0)
503
{
504
// Right
505
int* t = &tris[e[2]*4];
506
if (t[0] == -1)
507
{
508
t[0] = e[1];
509
t[1] = e[0];
510
}
511
else if (t[0] == e[0])
512
t[2] = e[1];
513
else if (t[1] == e[1])
514
t[2] = e[0];
515
}
516
}
517
518
for (int i = 0; i < tris.size()/4; ++i)
519
{
520
int* t = &tris[i*4];
521
if (t[0] == -1 || t[1] == -1 || t[2] == -1)
522
{
523
ctx->log(RC_LOG_WARNING, "delaunayHull: Removing dangling face %d [%d,%d,%d].", i, t[0],t[1],t[2]);
524
t[0] = tris[tris.size()-4];
525
t[1] = tris[tris.size()-3];
526
t[2] = tris[tris.size()-2];
527
t[3] = tris[tris.size()-1];
528
tris.resize(tris.size()-4);
529
--i;
530
}
531
}
532
}
533
534
// Calculate minimum extend of the polygon.
535
static float polyMinExtent(const float* verts, const int nverts)
536
{
537
float minDist = FLT_MAX;
538
for (int i = 0; i < nverts; i++)
539
{
540
const int ni = (i+1) % nverts;
541
const float* p1 = &verts[i*3];
542
const float* p2 = &verts[ni*3];
543
float maxEdgeDist = 0;
544
for (int j = 0; j < nverts; j++)
545
{
546
if (j == i || j == ni) continue;
547
float d = distancePtSeg2d(&verts[j*3], p1,p2);
548
maxEdgeDist = rcMax(maxEdgeDist, d);
549
}
550
minDist = rcMin(minDist, maxEdgeDist);
551
}
552
return rcSqrt(minDist);
553
}
554
555
// Last time I checked the if version got compiled using cmov, which was a lot faster than module (with idiv).
556
inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; }
557
inline int next(int i, int n) { return i+1 < n ? i+1 : 0; }
558
559
static void triangulateHull(const int /*nverts*/, const float* verts, const int nhull, const int* hull, const int nin, rcIntArray& tris)
560
{
561
int start = 0, left = 1, right = nhull-1;
562
563
// Start from an ear with shortest perimeter.
564
// This tends to favor well formed triangles as starting point.
565
float dmin = FLT_MAX;
566
for (int i = 0; i < nhull; i++)
567
{
568
if (hull[i] >= nin) continue; // Ears are triangles with original vertices as middle vertex while others are actually line segments on edges
569
int pi = prev(i, nhull);
570
int ni = next(i, nhull);
571
const float* pv = &verts[hull[pi]*3];
572
const float* cv = &verts[hull[i]*3];
573
const float* nv = &verts[hull[ni]*3];
574
const float d = vdist2(pv,cv) + vdist2(cv,nv) + vdist2(nv,pv);
575
if (d < dmin)
576
{
577
start = i;
578
left = ni;
579
right = pi;
580
dmin = d;
581
}
582
}
583
584
// Add first triangle
585
tris.push(hull[start]);
586
tris.push(hull[left]);
587
tris.push(hull[right]);
588
tris.push(0);
589
590
// Triangulate the polygon by moving left or right,
591
// depending on which triangle has shorter perimeter.
592
// This heuristic was chose emprically, since it seems
593
// handle tesselated straight edges well.
594
while (next(left, nhull) != right)
595
{
596
// Check to see if se should advance left or right.
597
int nleft = next(left, nhull);
598
int nright = prev(right, nhull);
599
600
const float* cvleft = &verts[hull[left]*3];
601
const float* nvleft = &verts[hull[nleft]*3];
602
const float* cvright = &verts[hull[right]*3];
603
const float* nvright = &verts[hull[nright]*3];
604
const float dleft = vdist2(cvleft, nvleft) + vdist2(nvleft, cvright);
605
const float dright = vdist2(cvright, nvright) + vdist2(cvleft, nvright);
606
607
if (dleft < dright)
608
{
609
tris.push(hull[left]);
610
tris.push(hull[nleft]);
611
tris.push(hull[right]);
612
tris.push(0);
613
left = nleft;
614
}
615
else
616
{
617
tris.push(hull[left]);
618
tris.push(hull[nright]);
619
tris.push(hull[right]);
620
tris.push(0);
621
right = nright;
622
}
623
}
624
}
625
626
627
inline float getJitterX(const int i)
628
{
629
return (((i * 0x8da6b343) & 0xffff) / 65535.0f * 2.0f) - 1.0f;
630
}
631
632
inline float getJitterY(const int i)
633
{
634
return (((i * 0xd8163841) & 0xffff) / 65535.0f * 2.0f) - 1.0f;
635
}
636
637
static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin,
638
const float sampleDist, const float sampleMaxError,
639
const int heightSearchRadius, const rcCompactHeightfield& chf,
640
const rcHeightPatch& hp, float* verts, int& nverts,
641
rcIntArray& tris, rcIntArray& edges, rcIntArray& samples)
642
{
643
static const int MAX_VERTS = 127;
644
static const int MAX_TRIS = 255; // Max tris for delaunay is 2n-2-k (n=num verts, k=num hull verts).
645
static const int MAX_VERTS_PER_EDGE = 32;
646
float edge[(MAX_VERTS_PER_EDGE+1)*3];
647
int hull[MAX_VERTS];
648
int nhull = 0;
649
650
nverts = nin;
651
652
for (int i = 0; i < nin; ++i)
653
rcVcopy(&verts[i*3], &in[i*3]);
654
655
edges.clear();
656
tris.clear();
657
658
const float cs = chf.cs;
659
const float ics = 1.0f/cs;
660
661
// Calculate minimum extents of the polygon based on input data.
662
float minExtent = polyMinExtent(verts, nverts);
663
664
// Tessellate outlines.
665
// This is done in separate pass in order to ensure
666
// seamless height values across the ply boundaries.
667
if (sampleDist > 0)
668
{
669
for (int i = 0, j = nin-1; i < nin; j=i++)
670
{
671
const float* vj = &in[j*3];
672
const float* vi = &in[i*3];
673
bool swapped = false;
674
// Make sure the segments are always handled in same order
675
// using lexological sort or else there will be seams.
676
if (fabsf(vj[0]-vi[0]) < 1e-6f)
677
{
678
if (vj[2] > vi[2])
679
{
680
rcSwap(vj,vi);
681
swapped = true;
682
}
683
}
684
else
685
{
686
if (vj[0] > vi[0])
687
{
688
rcSwap(vj,vi);
689
swapped = true;
690
}
691
}
692
// Create samples along the edge.
693
float dx = vi[0] - vj[0];
694
float dy = vi[1] - vj[1];
695
float dz = vi[2] - vj[2];
696
float d = sqrtf(dx*dx + dz*dz);
697
int nn = 1 + (int)floorf(d/sampleDist);
698
if (nn >= MAX_VERTS_PER_EDGE) nn = MAX_VERTS_PER_EDGE-1;
699
if (nverts+nn >= MAX_VERTS)
700
nn = MAX_VERTS-1-nverts;
701
702
for (int k = 0; k <= nn; ++k)
703
{
704
float u = (float)k/(float)nn;
705
float* pos = &edge[k*3];
706
pos[0] = vj[0] + dx*u;
707
pos[1] = vj[1] + dy*u;
708
pos[2] = vj[2] + dz*u;
709
pos[1] = getHeight(pos[0],pos[1],pos[2], cs, ics, chf.ch, heightSearchRadius, hp)*chf.ch;
710
}
711
// Simplify samples.
712
int idx[MAX_VERTS_PER_EDGE] = {0,nn};
713
int nidx = 2;
714
for (int k = 0; k < nidx-1; )
715
{
716
const int a = idx[k];
717
const int b = idx[k+1];
718
const float* va = &edge[a*3];
719
const float* vb = &edge[b*3];
720
// Find maximum deviation along the segment.
721
float maxd = 0;
722
int maxi = -1;
723
for (int m = a+1; m < b; ++m)
724
{
725
float dev = distancePtSeg(&edge[m*3],va,vb);
726
if (dev > maxd)
727
{
728
maxd = dev;
729
maxi = m;
730
}
731
}
732
// If the max deviation is larger than accepted error,
733
// add new point, else continue to next segment.
734
if (maxi != -1 && maxd > rcSqr(sampleMaxError))
735
{
736
for (int m = nidx; m > k; --m)
737
idx[m] = idx[m-1];
738
idx[k+1] = maxi;
739
nidx++;
740
}
741
else
742
{
743
++k;
744
}
745
}
746
747
hull[nhull++] = j;
748
// Add new vertices.
749
if (swapped)
750
{
751
for (int k = nidx-2; k > 0; --k)
752
{
753
rcVcopy(&verts[nverts*3], &edge[idx[k]*3]);
754
hull[nhull++] = nverts;
755
nverts++;
756
}
757
}
758
else
759
{
760
for (int k = 1; k < nidx-1; ++k)
761
{
762
rcVcopy(&verts[nverts*3], &edge[idx[k]*3]);
763
hull[nhull++] = nverts;
764
nverts++;
765
}
766
}
767
}
768
}
769
770
// If the polygon minimum extent is small (sliver or small triangle), do not try to add internal points.
771
if (minExtent < sampleDist*2)
772
{
773
triangulateHull(nverts, verts, nhull, hull, nin, tris);
774
return true;
775
}
776
777
// Tessellate the base mesh.
778
// We're using the triangulateHull instead of delaunayHull as it tends to
779
// create a bit better triangulation for long thin triangles when there
780
// are no internal points.
781
triangulateHull(nverts, verts, nhull, hull, nin, tris);
782
783
if (tris.size() == 0)
784
{
785
// Could not triangulate the poly, make sure there is some valid data there.
786
ctx->log(RC_LOG_WARNING, "buildPolyDetail: Could not triangulate polygon (%d verts).", nverts);
787
return true;
788
}
789
790
if (sampleDist > 0)
791
{
792
// Create sample locations in a grid.
793
float bmin[3], bmax[3];
794
rcVcopy(bmin, in);
795
rcVcopy(bmax, in);
796
for (int i = 1; i < nin; ++i)
797
{
798
rcVmin(bmin, &in[i*3]);
799
rcVmax(bmax, &in[i*3]);
800
}
801
int x0 = (int)floorf(bmin[0]/sampleDist);
802
int x1 = (int)ceilf(bmax[0]/sampleDist);
803
int z0 = (int)floorf(bmin[2]/sampleDist);
804
int z1 = (int)ceilf(bmax[2]/sampleDist);
805
samples.clear();
806
for (int z = z0; z < z1; ++z)
807
{
808
for (int x = x0; x < x1; ++x)
809
{
810
float pt[3];
811
pt[0] = x*sampleDist;
812
pt[1] = (bmax[1]+bmin[1])*0.5f;
813
pt[2] = z*sampleDist;
814
// Make sure the samples are not too close to the edges.
815
if (distToPoly(nin,in,pt) > -sampleDist/2) continue;
816
samples.push(x);
817
samples.push(getHeight(pt[0], pt[1], pt[2], cs, ics, chf.ch, heightSearchRadius, hp));
818
samples.push(z);
819
samples.push(0); // Not added
820
}
821
}
822
823
// Add the samples starting from the one that has the most
824
// error. The procedure stops when all samples are added
825
// or when the max error is within treshold.
826
const int nsamples = samples.size()/4;
827
for (int iter = 0; iter < nsamples; ++iter)
828
{
829
if (nverts >= MAX_VERTS)
830
break;
831
832
// Find sample with most error.
833
float bestpt[3] = {0,0,0};
834
float bestd = 0;
835
int besti = -1;
836
for (int i = 0; i < nsamples; ++i)
837
{
838
const int* s = &samples[i*4];
839
if (s[3]) continue; // skip added.
840
float pt[3];
841
// The sample location is jittered to get rid of some bad triangulations
842
// which are cause by symmetrical data from the grid structure.
843
pt[0] = s[0]*sampleDist + getJitterX(i)*cs*0.1f;
844
pt[1] = s[1]*chf.ch;
845
pt[2] = s[2]*sampleDist + getJitterY(i)*cs*0.1f;
846
float d = distToTriMesh(pt, verts, nverts, &tris[0], tris.size()/4);
847
if (d < 0) continue; // did not hit the mesh.
848
if (d > bestd)
849
{
850
bestd = d;
851
besti = i;
852
rcVcopy(bestpt,pt);
853
}
854
}
855
// If the max error is within accepted threshold, stop tesselating.
856
if (bestd <= sampleMaxError || besti == -1)
857
break;
858
// Mark sample as added.
859
samples[besti*4+3] = 1;
860
// Add the new sample point.
861
rcVcopy(&verts[nverts*3],bestpt);
862
nverts++;
863
864
// Create new triangulation.
865
// TODO: Incremental add instead of full rebuild.
866
edges.clear();
867
tris.clear();
868
delaunayHull(ctx, nverts, verts, nhull, hull, tris, edges);
869
}
870
}
871
872
const int ntris = tris.size()/4;
873
if (ntris > MAX_TRIS)
874
{
875
tris.resize(MAX_TRIS*4);
876
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Shrinking triangle count from %d to max %d.", ntris, MAX_TRIS);
877
}
878
879
return true;
880
}
881
882
static void seedArrayWithPolyCenter(rcContext* ctx, const rcCompactHeightfield& chf,
883
const unsigned short* poly, const int npoly,
884
const unsigned short* verts, const int bs,
885
rcHeightPatch& hp, rcIntArray& array)
886
{
887
// Note: Reads to the compact heightfield are offset by border size (bs)
888
// since border size offset is already removed from the polymesh vertices.
889
890
static const int offset[9*2] =
891
{
892
0,0, -1,-1, 0,-1, 1,-1, 1,0, 1,1, 0,1, -1,1, -1,0,
893
};
894
895
// Find cell closest to a poly vertex
896
int startCellX = 0, startCellY = 0, startSpanIndex = -1;
897
int dmin = RC_UNSET_HEIGHT;
898
for (int j = 0; j < npoly && dmin > 0; ++j)
899
{
900
for (int k = 0; k < 9 && dmin > 0; ++k)
901
{
902
const int ax = (int)verts[poly[j]*3+0] + offset[k*2+0];
903
const int ay = (int)verts[poly[j]*3+1];
904
const int az = (int)verts[poly[j]*3+2] + offset[k*2+1];
905
if (ax < hp.xmin || ax >= hp.xmin+hp.width ||
906
az < hp.ymin || az >= hp.ymin+hp.height)
907
continue;
908
909
const rcCompactCell& c = chf.cells[(ax+bs)+(az+bs)*chf.width];
910
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni && dmin > 0; ++i)
911
{
912
const rcCompactSpan& s = chf.spans[i];
913
int d = rcAbs(ay - (int)s.y);
914
if (d < dmin)
915
{
916
startCellX = ax;
917
startCellY = az;
918
startSpanIndex = i;
919
dmin = d;
920
}
921
}
922
}
923
}
924
925
rcAssert(startSpanIndex != -1);
926
// Find center of the polygon
927
int pcx = 0, pcy = 0;
928
for (int j = 0; j < npoly; ++j)
929
{
930
pcx += (int)verts[poly[j]*3+0];
931
pcy += (int)verts[poly[j]*3+2];
932
}
933
pcx /= npoly;
934
pcy /= npoly;
935
936
// Use seeds array as a stack for DFS
937
array.clear();
938
array.push(startCellX);
939
array.push(startCellY);
940
array.push(startSpanIndex);
941
942
int dirs[] = { 0, 1, 2, 3 };
943
memset(hp.data, 0, sizeof(unsigned short)*hp.width*hp.height);
944
// DFS to move to the center. Note that we need a DFS here and can not just move
945
// directly towards the center without recording intermediate nodes, even though the polygons
946
// are convex. In very rare we can get stuck due to contour simplification if we do not
947
// record nodes.
948
int cx = -1, cy = -1, ci = -1;
949
while (true)
950
{
951
if (array.size() < 3)
952
{
953
ctx->log(RC_LOG_WARNING, "Walk towards polygon center failed to reach center");
954
break;
955
}
956
957
ci = array.pop();
958
cy = array.pop();
959
cx = array.pop();
960
961
if (cx == pcx && cy == pcy)
962
break;
963
964
// If we are already at the correct X-position, prefer direction
965
// directly towards the center in the Y-axis; otherwise prefer
966
// direction in the X-axis
967
int directDir;
968
if (cx == pcx)
969
directDir = rcGetDirForOffset(0, pcy > cy ? 1 : -1);
970
else
971
directDir = rcGetDirForOffset(pcx > cx ? 1 : -1, 0);
972
973
// Push the direct dir last so we start with this on next iteration
974
rcSwap(dirs[directDir], dirs[3]);
975
976
const rcCompactSpan& cs = chf.spans[ci];
977
for (int i = 0; i < 4; i++)
978
{
979
int dir = dirs[i];
980
if (rcGetCon(cs, dir) == RC_NOT_CONNECTED)
981
continue;
982
983
int newX = cx + rcGetDirOffsetX(dir);
984
int newY = cy + rcGetDirOffsetY(dir);
985
986
int hpx = newX - hp.xmin;
987
int hpy = newY - hp.ymin;
988
if (hpx < 0 || hpx >= hp.width || hpy < 0 || hpy >= hp.height)
989
continue;
990
991
if (hp.data[hpx+hpy*hp.width] != 0)
992
continue;
993
994
hp.data[hpx+hpy*hp.width] = 1;
995
array.push(newX);
996
array.push(newY);
997
array.push((int)chf.cells[(newX+bs)+(newY+bs)*chf.width].index + rcGetCon(cs, dir));
998
}
999
1000
rcSwap(dirs[directDir], dirs[3]);
1001
}
1002
1003
array.clear();
1004
// getHeightData seeds are given in coordinates with borders
1005
array.push(cx+bs);
1006
array.push(cy+bs);
1007
array.push(ci);
1008
1009
memset(hp.data, 0xff, sizeof(unsigned short)*hp.width*hp.height);
1010
const rcCompactSpan& cs = chf.spans[ci];
1011
hp.data[cx-hp.xmin+(cy-hp.ymin)*hp.width] = cs.y;
1012
}
1013
1014
1015
static void push3(rcIntArray& queue, int v1, int v2, int v3)
1016
{
1017
queue.resize(queue.size() + 3);
1018
queue[queue.size() - 3] = v1;
1019
queue[queue.size() - 2] = v2;
1020
queue[queue.size() - 1] = v3;
1021
}
1022
1023
static void getHeightData(rcContext* ctx, const rcCompactHeightfield& chf,
1024
const unsigned short* poly, const int npoly,
1025
const unsigned short* verts, const int bs,
1026
rcHeightPatch& hp, rcIntArray& queue,
1027
int region)
1028
{
1029
// Note: Reads to the compact heightfield are offset by border size (bs)
1030
// since border size offset is already removed from the polymesh vertices.
1031
1032
queue.clear();
1033
// Set all heights to RC_UNSET_HEIGHT.
1034
memset(hp.data, 0xff, sizeof(unsigned short)*hp.width*hp.height);
1035
1036
bool empty = true;
1037
1038
// We cannot sample from this poly if it was created from polys
1039
// of different regions. If it was then it could potentially be overlapping
1040
// with polys of that region and the heights sampled here could be wrong.
1041
if (region != RC_MULTIPLE_REGS)
1042
{
1043
// Copy the height from the same region, and mark region borders
1044
// as seed points to fill the rest.
1045
for (int hy = 0; hy < hp.height; hy++)
1046
{
1047
int y = hp.ymin + hy + bs;
1048
for (int hx = 0; hx < hp.width; hx++)
1049
{
1050
int x = hp.xmin + hx + bs;
1051
const rcCompactCell& c = chf.cells[x + y*chf.width];
1052
for (int i = (int)c.index, ni = (int)(c.index + c.count); i < ni; ++i)
1053
{
1054
const rcCompactSpan& s = chf.spans[i];
1055
if (s.reg == region)
1056
{
1057
// Store height
1058
hp.data[hx + hy*hp.width] = s.y;
1059
empty = false;
1060
1061
// If any of the neighbours is not in same region,
1062
// add the current location as flood fill start
1063
bool border = false;
1064
for (int dir = 0; dir < 4; ++dir)
1065
{
1066
if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
1067
{
1068
const int ax = x + rcGetDirOffsetX(dir);
1069
const int ay = y + rcGetDirOffsetY(dir);
1070
const int ai = (int)chf.cells[ax + ay*chf.width].index + rcGetCon(s, dir);
1071
const rcCompactSpan& as = chf.spans[ai];
1072
if (as.reg != region)
1073
{
1074
border = true;
1075
break;
1076
}
1077
}
1078
}
1079
if (border)
1080
push3(queue, x, y, i);
1081
break;
1082
}
1083
}
1084
}
1085
}
1086
}
1087
1088
// if the polygon does not contain any points from the current region (rare, but happens)
1089
// or if it could potentially be overlapping polygons of the same region,
1090
// then use the center as the seed point.
1091
if (empty)
1092
seedArrayWithPolyCenter(ctx, chf, poly, npoly, verts, bs, hp, queue);
1093
1094
static const int RETRACT_SIZE = 256;
1095
int head = 0;
1096
1097
// We assume the seed is centered in the polygon, so a BFS to collect
1098
// height data will ensure we do not move onto overlapping polygons and
1099
// sample wrong heights.
1100
while (head*3 < queue.size())
1101
{
1102
int cx = queue[head*3+0];
1103
int cy = queue[head*3+1];
1104
int ci = queue[head*3+2];
1105
head++;
1106
if (head >= RETRACT_SIZE)
1107
{
1108
head = 0;
1109
if (queue.size() > RETRACT_SIZE*3)
1110
memmove(&queue[0], &queue[RETRACT_SIZE*3], sizeof(int)*(queue.size()-RETRACT_SIZE*3));
1111
queue.resize(queue.size()-RETRACT_SIZE*3);
1112
}
1113
1114
const rcCompactSpan& cs = chf.spans[ci];
1115
for (int dir = 0; dir < 4; ++dir)
1116
{
1117
if (rcGetCon(cs, dir) == RC_NOT_CONNECTED) continue;
1118
1119
const int ax = cx + rcGetDirOffsetX(dir);
1120
const int ay = cy + rcGetDirOffsetY(dir);
1121
const int hx = ax - hp.xmin - bs;
1122
const int hy = ay - hp.ymin - bs;
1123
1124
if ((unsigned int)hx >= (unsigned int)hp.width || (unsigned int)hy >= (unsigned int)hp.height)
1125
continue;
1126
1127
if (hp.data[hx + hy*hp.width] != RC_UNSET_HEIGHT)
1128
continue;
1129
1130
const int ai = (int)chf.cells[ax + ay*chf.width].index + rcGetCon(cs, dir);
1131
const rcCompactSpan& as = chf.spans[ai];
1132
1133
hp.data[hx + hy*hp.width] = as.y;
1134
1135
push3(queue, ax, ay, ai);
1136
}
1137
}
1138
}
1139
1140
static unsigned char getEdgeFlags(const float* va, const float* vb,
1141
const float* vpoly, const int npoly)
1142
{
1143
// The flag returned by this function matches dtDetailTriEdgeFlags in Detour.
1144
// Figure out if edge (va,vb) is part of the polygon boundary.
1145
static const float thrSqr = rcSqr(0.001f);
1146
for (int i = 0, j = npoly-1; i < npoly; j=i++)
1147
{
1148
if (distancePtSeg2d(va, &vpoly[j*3], &vpoly[i*3]) < thrSqr &&
1149
distancePtSeg2d(vb, &vpoly[j*3], &vpoly[i*3]) < thrSqr)
1150
return 1;
1151
}
1152
return 0;
1153
}
1154
1155
static unsigned char getTriFlags(const float* va, const float* vb, const float* vc,
1156
const float* vpoly, const int npoly)
1157
{
1158
unsigned char flags = 0;
1159
flags |= getEdgeFlags(va,vb,vpoly,npoly) << 0;
1160
flags |= getEdgeFlags(vb,vc,vpoly,npoly) << 2;
1161
flags |= getEdgeFlags(vc,va,vpoly,npoly) << 4;
1162
return flags;
1163
}
1164
1165
/// @par
1166
///
1167
/// See the #rcConfig documentation for more information on the configuration parameters.
1168
///
1169
/// @see rcAllocPolyMeshDetail, rcPolyMesh, rcCompactHeightfield, rcPolyMeshDetail, rcConfig
1170
bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompactHeightfield& chf,
1171
const float sampleDist, const float sampleMaxError,
1172
rcPolyMeshDetail& dmesh)
1173
{
1174
rcAssert(ctx);
1175
1176
rcScopedTimer timer(ctx, RC_TIMER_BUILD_POLYMESHDETAIL);
1177
1178
if (mesh.nverts == 0 || mesh.npolys == 0)
1179
return true;
1180
1181
const int nvp = mesh.nvp;
1182
const float cs = mesh.cs;
1183
const float ch = mesh.ch;
1184
const float* orig = mesh.bmin;
1185
const int borderSize = mesh.borderSize;
1186
const int heightSearchRadius = rcMax(1, (int)ceilf(mesh.maxEdgeError));
1187
1188
rcIntArray edges(64);
1189
rcIntArray tris(512);
1190
rcIntArray arr(512);
1191
rcIntArray samples(512);
1192
float verts[256*3];
1193
rcHeightPatch hp;
1194
int nPolyVerts = 0;
1195
int maxhw = 0, maxhh = 0;
1196
1197
rcScopedDelete<int> bounds((int*)rcAlloc(sizeof(int)*mesh.npolys*4, RC_ALLOC_TEMP));
1198
if (!bounds)
1199
{
1200
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'bounds' (%d).", mesh.npolys*4);
1201
return false;
1202
}
1203
rcScopedDelete<float> poly((float*)rcAlloc(sizeof(float)*nvp*3, RC_ALLOC_TEMP));
1204
if (!poly)
1205
{
1206
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'poly' (%d).", nvp*3);
1207
return false;
1208
}
1209
1210
// Find max size for a polygon area.
1211
for (int i = 0; i < mesh.npolys; ++i)
1212
{
1213
const unsigned short* p = &mesh.polys[i*nvp*2];
1214
int& xmin = bounds[i*4+0];
1215
int& xmax = bounds[i*4+1];
1216
int& ymin = bounds[i*4+2];
1217
int& ymax = bounds[i*4+3];
1218
xmin = chf.width;
1219
xmax = 0;
1220
ymin = chf.height;
1221
ymax = 0;
1222
for (int j = 0; j < nvp; ++j)
1223
{
1224
if(p[j] == RC_MESH_NULL_IDX) break;
1225
const unsigned short* v = &mesh.verts[p[j]*3];
1226
xmin = rcMin(xmin, (int)v[0]);
1227
xmax = rcMax(xmax, (int)v[0]);
1228
ymin = rcMin(ymin, (int)v[2]);
1229
ymax = rcMax(ymax, (int)v[2]);
1230
nPolyVerts++;
1231
}
1232
xmin = rcMax(0,xmin-1);
1233
xmax = rcMin(chf.width,xmax+1);
1234
ymin = rcMax(0,ymin-1);
1235
ymax = rcMin(chf.height,ymax+1);
1236
if (xmin >= xmax || ymin >= ymax) continue;
1237
maxhw = rcMax(maxhw, xmax-xmin);
1238
maxhh = rcMax(maxhh, ymax-ymin);
1239
}
1240
1241
hp.data = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxhw*maxhh, RC_ALLOC_TEMP);
1242
if (!hp.data)
1243
{
1244
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'hp.data' (%d).", maxhw*maxhh);
1245
return false;
1246
}
1247
1248
dmesh.nmeshes = mesh.npolys;
1249
dmesh.nverts = 0;
1250
dmesh.ntris = 0;
1251
dmesh.meshes = (unsigned int*)rcAlloc(sizeof(unsigned int)*dmesh.nmeshes*4, RC_ALLOC_PERM);
1252
if (!dmesh.meshes)
1253
{
1254
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.meshes' (%d).", dmesh.nmeshes*4);
1255
return false;
1256
}
1257
1258
int vcap = nPolyVerts+nPolyVerts/2;
1259
int tcap = vcap*2;
1260
1261
dmesh.nverts = 0;
1262
dmesh.verts = (float*)rcAlloc(sizeof(float)*vcap*3, RC_ALLOC_PERM);
1263
if (!dmesh.verts)
1264
{
1265
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.verts' (%d).", vcap*3);
1266
return false;
1267
}
1268
dmesh.ntris = 0;
1269
dmesh.tris = (unsigned char*)rcAlloc(sizeof(unsigned char)*tcap*4, RC_ALLOC_PERM);
1270
if (!dmesh.tris)
1271
{
1272
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.tris' (%d).", tcap*4);
1273
return false;
1274
}
1275
1276
for (int i = 0; i < mesh.npolys; ++i)
1277
{
1278
const unsigned short* p = &mesh.polys[i*nvp*2];
1279
1280
// Store polygon vertices for processing.
1281
int npoly = 0;
1282
for (int j = 0; j < nvp; ++j)
1283
{
1284
if(p[j] == RC_MESH_NULL_IDX) break;
1285
const unsigned short* v = &mesh.verts[p[j]*3];
1286
poly[j*3+0] = v[0]*cs;
1287
poly[j*3+1] = v[1]*ch;
1288
poly[j*3+2] = v[2]*cs;
1289
npoly++;
1290
}
1291
1292
// Get the height data from the area of the polygon.
1293
hp.xmin = bounds[i*4+0];
1294
hp.ymin = bounds[i*4+2];
1295
hp.width = bounds[i*4+1]-bounds[i*4+0];
1296
hp.height = bounds[i*4+3]-bounds[i*4+2];
1297
getHeightData(ctx, chf, p, npoly, mesh.verts, borderSize, hp, arr, mesh.regs[i]);
1298
1299
// Build detail mesh.
1300
int nverts = 0;
1301
if (!buildPolyDetail(ctx, poly, npoly,
1302
sampleDist, sampleMaxError,
1303
heightSearchRadius, chf, hp,
1304
verts, nverts, tris,
1305
edges, samples))
1306
{
1307
return false;
1308
}
1309
1310
// Move detail verts to world space.
1311
for (int j = 0; j < nverts; ++j)
1312
{
1313
verts[j*3+0] += orig[0];
1314
verts[j*3+1] += orig[1] + chf.ch; // Is this offset necessary?
1315
verts[j*3+2] += orig[2];
1316
}
1317
// Offset poly too, will be used to flag checking.
1318
for (int j = 0; j < npoly; ++j)
1319
{
1320
poly[j*3+0] += orig[0];
1321
poly[j*3+1] += orig[1];
1322
poly[j*3+2] += orig[2];
1323
}
1324
1325
// Store detail submesh.
1326
const int ntris = tris.size()/4;
1327
1328
dmesh.meshes[i*4+0] = (unsigned int)dmesh.nverts;
1329
dmesh.meshes[i*4+1] = (unsigned int)nverts;
1330
dmesh.meshes[i*4+2] = (unsigned int)dmesh.ntris;
1331
dmesh.meshes[i*4+3] = (unsigned int)ntris;
1332
1333
// Store vertices, allocate more memory if necessary.
1334
if (dmesh.nverts+nverts > vcap)
1335
{
1336
while (dmesh.nverts+nverts > vcap)
1337
vcap += 256;
1338
1339
float* newv = (float*)rcAlloc(sizeof(float)*vcap*3, RC_ALLOC_PERM);
1340
if (!newv)
1341
{
1342
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'newv' (%d).", vcap*3);
1343
return false;
1344
}
1345
if (dmesh.nverts)
1346
memcpy(newv, dmesh.verts, sizeof(float)*3*dmesh.nverts);
1347
rcFree(dmesh.verts);
1348
dmesh.verts = newv;
1349
}
1350
for (int j = 0; j < nverts; ++j)
1351
{
1352
dmesh.verts[dmesh.nverts*3+0] = verts[j*3+0];
1353
dmesh.verts[dmesh.nverts*3+1] = verts[j*3+1];
1354
dmesh.verts[dmesh.nverts*3+2] = verts[j*3+2];
1355
dmesh.nverts++;
1356
}
1357
1358
// Store triangles, allocate more memory if necessary.
1359
if (dmesh.ntris+ntris > tcap)
1360
{
1361
while (dmesh.ntris+ntris > tcap)
1362
tcap += 256;
1363
unsigned char* newt = (unsigned char*)rcAlloc(sizeof(unsigned char)*tcap*4, RC_ALLOC_PERM);
1364
if (!newt)
1365
{
1366
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'newt' (%d).", tcap*4);
1367
return false;
1368
}
1369
if (dmesh.ntris)
1370
memcpy(newt, dmesh.tris, sizeof(unsigned char)*4*dmesh.ntris);
1371
rcFree(dmesh.tris);
1372
dmesh.tris = newt;
1373
}
1374
for (int j = 0; j < ntris; ++j)
1375
{
1376
const int* t = &tris[j*4];
1377
dmesh.tris[dmesh.ntris*4+0] = (unsigned char)t[0];
1378
dmesh.tris[dmesh.ntris*4+1] = (unsigned char)t[1];
1379
dmesh.tris[dmesh.ntris*4+2] = (unsigned char)t[2];
1380
dmesh.tris[dmesh.ntris*4+3] = getTriFlags(&verts[t[0]*3], &verts[t[1]*3], &verts[t[2]*3], poly, npoly);
1381
dmesh.ntris++;
1382
}
1383
}
1384
1385
return true;
1386
}
1387
1388
/// @see rcAllocPolyMeshDetail, rcPolyMeshDetail
1389
bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int nmeshes, rcPolyMeshDetail& mesh)
1390
{
1391
rcAssert(ctx);
1392
1393
rcScopedTimer timer(ctx, RC_TIMER_MERGE_POLYMESHDETAIL);
1394
1395
int maxVerts = 0;
1396
int maxTris = 0;
1397
int maxMeshes = 0;
1398
1399
for (int i = 0; i < nmeshes; ++i)
1400
{
1401
if (!meshes[i]) continue;
1402
maxVerts += meshes[i]->nverts;
1403
maxTris += meshes[i]->ntris;
1404
maxMeshes += meshes[i]->nmeshes;
1405
}
1406
1407
mesh.nmeshes = 0;
1408
mesh.meshes = (unsigned int*)rcAlloc(sizeof(unsigned int)*maxMeshes*4, RC_ALLOC_PERM);
1409
if (!mesh.meshes)
1410
{
1411
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'pmdtl.meshes' (%d).", maxMeshes*4);
1412
return false;
1413
}
1414
1415
mesh.ntris = 0;
1416
mesh.tris = (unsigned char*)rcAlloc(sizeof(unsigned char)*maxTris*4, RC_ALLOC_PERM);
1417
if (!mesh.tris)
1418
{
1419
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.tris' (%d).", maxTris*4);
1420
return false;
1421
}
1422
1423
mesh.nverts = 0;
1424
mesh.verts = (float*)rcAlloc(sizeof(float)*maxVerts*3, RC_ALLOC_PERM);
1425
if (!mesh.verts)
1426
{
1427
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.verts' (%d).", maxVerts*3);
1428
return false;
1429
}
1430
1431
// Merge datas.
1432
for (int i = 0; i < nmeshes; ++i)
1433
{
1434
rcPolyMeshDetail* dm = meshes[i];
1435
if (!dm) continue;
1436
for (int j = 0; j < dm->nmeshes; ++j)
1437
{
1438
unsigned int* dst = &mesh.meshes[mesh.nmeshes*4];
1439
unsigned int* src = &dm->meshes[j*4];
1440
dst[0] = (unsigned int)mesh.nverts+src[0];
1441
dst[1] = src[1];
1442
dst[2] = (unsigned int)mesh.ntris+src[2];
1443
dst[3] = src[3];
1444
mesh.nmeshes++;
1445
}
1446
1447
for (int k = 0; k < dm->nverts; ++k)
1448
{
1449
rcVcopy(&mesh.verts[mesh.nverts*3], &dm->verts[k*3]);
1450
mesh.nverts++;
1451
}
1452
for (int k = 0; k < dm->ntris; ++k)
1453
{
1454
mesh.tris[mesh.ntris*4+0] = dm->tris[k*4+0];
1455
mesh.tris[mesh.ntris*4+1] = dm->tris[k*4+1];
1456
mesh.tris[mesh.ntris*4+2] = dm->tris[k*4+2];
1457
mesh.tris[mesh.ntris*4+3] = dm->tris[k*4+3];
1458
mesh.ntris++;
1459
}
1460
}
1461
1462
return true;
1463
}
1464
1465