Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/rvo2/rvo2_2d/KdTree2d.cpp
9904 views
1
/*
2
* KdTree2d.cpp
3
* RVO2 Library
4
*
5
* Copyright 2008 University of North Carolina at Chapel Hill
6
*
7
* Licensed under the Apache License, Version 2.0 (the "License");
8
* you may not use this file except in compliance with the License.
9
* You may obtain a copy of the License at
10
*
11
* http://www.apache.org/licenses/LICENSE-2.0
12
*
13
* Unless required by applicable law or agreed to in writing, software
14
* distributed under the License is distributed on an "AS IS" BASIS,
15
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16
* See the License for the specific language governing permissions and
17
* limitations under the License.
18
*
19
* Please send all bug reports to <[email protected]>.
20
*
21
* The authors may be contacted via:
22
*
23
* Jur van den Berg, Stephen J. Guy, Jamie Snape, Ming C. Lin, Dinesh Manocha
24
* Dept. of Computer Science
25
* 201 S. Columbia St.
26
* Frederick P. Brooks, Jr. Computer Science Bldg.
27
* Chapel Hill, N.C. 27599-3175
28
* United States of America
29
*
30
* <http://gamma.cs.unc.edu/RVO2/>
31
*/
32
33
#include "KdTree2d.h"
34
35
#include "Agent2d.h"
36
#include "RVOSimulator2d.h"
37
#include "Obstacle2d.h"
38
39
namespace RVO2D {
40
KdTree2D::KdTree2D(RVOSimulator2D *sim) : obstacleTree_(NULL), sim_(sim) { }
41
42
KdTree2D::~KdTree2D()
43
{
44
deleteObstacleTree(obstacleTree_);
45
}
46
47
void KdTree2D::buildAgentTree(std::vector<Agent2D *> agents)
48
{
49
agents_.swap(agents);
50
51
if (!agents_.empty()) {
52
agentTree_.resize(2 * agents_.size() - 1);
53
buildAgentTreeRecursive(0, agents_.size(), 0);
54
}
55
}
56
57
void KdTree2D::buildAgentTreeRecursive(size_t begin, size_t end, size_t node)
58
{
59
agentTree_[node].begin = begin;
60
agentTree_[node].end = end;
61
agentTree_[node].minX = agentTree_[node].maxX = agents_[begin]->position_.x();
62
agentTree_[node].minY = agentTree_[node].maxY = agents_[begin]->position_.y();
63
64
for (size_t i = begin + 1; i < end; ++i) {
65
agentTree_[node].maxX = std::max(agentTree_[node].maxX, agents_[i]->position_.x());
66
agentTree_[node].minX = std::min(agentTree_[node].minX, agents_[i]->position_.x());
67
agentTree_[node].maxY = std::max(agentTree_[node].maxY, agents_[i]->position_.y());
68
agentTree_[node].minY = std::min(agentTree_[node].minY, agents_[i]->position_.y());
69
}
70
71
if (end - begin > MAX_LEAF_SIZE) {
72
/* No leaf node. */
73
const bool isVertical = (agentTree_[node].maxX - agentTree_[node].minX > agentTree_[node].maxY - agentTree_[node].minY);
74
const float splitValue = (isVertical ? 0.5f * (agentTree_[node].maxX + agentTree_[node].minX) : 0.5f * (agentTree_[node].maxY + agentTree_[node].minY));
75
76
size_t left = begin;
77
size_t right = end;
78
79
while (left < right) {
80
while (left < right && (isVertical ? agents_[left]->position_.x() : agents_[left]->position_.y()) < splitValue) {
81
++left;
82
}
83
84
while (right > left && (isVertical ? agents_[right - 1]->position_.x() : agents_[right - 1]->position_.y()) >= splitValue) {
85
--right;
86
}
87
88
if (left < right) {
89
std::swap(agents_[left], agents_[right - 1]);
90
++left;
91
--right;
92
}
93
}
94
95
if (left == begin) {
96
++left;
97
++right;
98
}
99
100
agentTree_[node].left = node + 1;
101
agentTree_[node].right = node + 2 * (left - begin);
102
103
buildAgentTreeRecursive(begin, left, agentTree_[node].left);
104
buildAgentTreeRecursive(left, end, agentTree_[node].right);
105
}
106
}
107
108
void KdTree2D::buildObstacleTree(std::vector<Obstacle2D *> obstacles)
109
{
110
deleteObstacleTree(obstacleTree_);
111
112
obstacleTree_ = buildObstacleTreeRecursive(obstacles);
113
}
114
115
116
KdTree2D::ObstacleTreeNode *KdTree2D::buildObstacleTreeRecursive(const std::vector<Obstacle2D *> &obstacles)
117
{
118
if (obstacles.empty()) {
119
return NULL;
120
}
121
else {
122
ObstacleTreeNode *const node = new ObstacleTreeNode;
123
124
size_t optimalSplit = 0;
125
size_t minLeft = obstacles.size();
126
size_t minRight = obstacles.size();
127
128
for (size_t i = 0; i < obstacles.size(); ++i) {
129
size_t leftSize = 0;
130
size_t rightSize = 0;
131
132
const Obstacle2D *const obstacleI1 = obstacles[i];
133
const Obstacle2D *const obstacleI2 = obstacleI1->nextObstacle_;
134
135
/* Compute optimal split node. */
136
for (size_t j = 0; j < obstacles.size(); ++j) {
137
if (i == j) {
138
continue;
139
}
140
141
const Obstacle2D *const obstacleJ1 = obstacles[j];
142
const Obstacle2D *const obstacleJ2 = obstacleJ1->nextObstacle_;
143
144
const float j1LeftOfI = leftOf(obstacleI1->point_, obstacleI2->point_, obstacleJ1->point_);
145
const float j2LeftOfI = leftOf(obstacleI1->point_, obstacleI2->point_, obstacleJ2->point_);
146
147
if (j1LeftOfI >= -RVO_EPSILON && j2LeftOfI >= -RVO_EPSILON) {
148
++leftSize;
149
}
150
else if (j1LeftOfI <= RVO_EPSILON && j2LeftOfI <= RVO_EPSILON) {
151
++rightSize;
152
}
153
else {
154
++leftSize;
155
++rightSize;
156
}
157
158
if (std::make_pair(std::max(leftSize, rightSize), std::min(leftSize, rightSize)) >= std::make_pair(std::max(minLeft, minRight), std::min(minLeft, minRight))) {
159
break;
160
}
161
}
162
163
if (std::make_pair(std::max(leftSize, rightSize), std::min(leftSize, rightSize)) < std::make_pair(std::max(minLeft, minRight), std::min(minLeft, minRight))) {
164
minLeft = leftSize;
165
minRight = rightSize;
166
optimalSplit = i;
167
}
168
}
169
170
/* Build split node. */
171
std::vector<Obstacle2D *> leftObstacles(minLeft);
172
std::vector<Obstacle2D *> rightObstacles(minRight);
173
174
size_t leftCounter = 0;
175
size_t rightCounter = 0;
176
const size_t i = optimalSplit;
177
178
const Obstacle2D *const obstacleI1 = obstacles[i];
179
const Obstacle2D *const obstacleI2 = obstacleI1->nextObstacle_;
180
181
for (size_t j = 0; j < obstacles.size(); ++j) {
182
if (i == j) {
183
continue;
184
}
185
186
Obstacle2D *const obstacleJ1 = obstacles[j];
187
Obstacle2D *const obstacleJ2 = obstacleJ1->nextObstacle_;
188
189
const float j1LeftOfI = leftOf(obstacleI1->point_, obstacleI2->point_, obstacleJ1->point_);
190
const float j2LeftOfI = leftOf(obstacleI1->point_, obstacleI2->point_, obstacleJ2->point_);
191
192
if (j1LeftOfI >= -RVO_EPSILON && j2LeftOfI >= -RVO_EPSILON) {
193
leftObstacles[leftCounter++] = obstacles[j];
194
}
195
else if (j1LeftOfI <= RVO_EPSILON && j2LeftOfI <= RVO_EPSILON) {
196
rightObstacles[rightCounter++] = obstacles[j];
197
}
198
else {
199
/* Split obstacle j. */
200
const float t = det(obstacleI2->point_ - obstacleI1->point_, obstacleJ1->point_ - obstacleI1->point_) / det(obstacleI2->point_ - obstacleI1->point_, obstacleJ1->point_ - obstacleJ2->point_);
201
202
const Vector2 splitpoint = obstacleJ1->point_ + t * (obstacleJ2->point_ - obstacleJ1->point_);
203
204
Obstacle2D *const newObstacle = new Obstacle2D();
205
newObstacle->point_ = splitpoint;
206
newObstacle->prevObstacle_ = obstacleJ1;
207
newObstacle->nextObstacle_ = obstacleJ2;
208
newObstacle->isConvex_ = true;
209
newObstacle->unitDir_ = obstacleJ1->unitDir_;
210
211
newObstacle->id_ = sim_->obstacles_.size();
212
213
sim_->obstacles_.push_back(newObstacle);
214
215
obstacleJ1->nextObstacle_ = newObstacle;
216
obstacleJ2->prevObstacle_ = newObstacle;
217
218
if (j1LeftOfI > 0.0f) {
219
leftObstacles[leftCounter++] = obstacleJ1;
220
rightObstacles[rightCounter++] = newObstacle;
221
}
222
else {
223
rightObstacles[rightCounter++] = obstacleJ1;
224
leftObstacles[leftCounter++] = newObstacle;
225
}
226
}
227
}
228
229
node->obstacle = obstacleI1;
230
node->left = buildObstacleTreeRecursive(leftObstacles);
231
node->right = buildObstacleTreeRecursive(rightObstacles);
232
return node;
233
}
234
}
235
236
void KdTree2D::computeAgentNeighbors(Agent2D *agent, float &rangeSq) const
237
{
238
queryAgentTreeRecursive(agent, rangeSq, 0);
239
}
240
241
void KdTree2D::computeObstacleNeighbors(Agent2D *agent, float rangeSq) const
242
{
243
queryObstacleTreeRecursive(agent, rangeSq, obstacleTree_);
244
}
245
246
void KdTree2D::deleteObstacleTree(ObstacleTreeNode *node)
247
{
248
if (node != NULL) {
249
deleteObstacleTree(node->left);
250
deleteObstacleTree(node->right);
251
delete node;
252
}
253
}
254
255
void KdTree2D::queryAgentTreeRecursive(Agent2D *agent, float &rangeSq, size_t node) const
256
{
257
if (agentTree_[node].end - agentTree_[node].begin <= MAX_LEAF_SIZE) {
258
for (size_t i = agentTree_[node].begin; i < agentTree_[node].end; ++i) {
259
agent->insertAgentNeighbor(agents_[i], rangeSq);
260
}
261
}
262
else {
263
const float distSqLeft = sqr(std::max(0.0f, agentTree_[agentTree_[node].left].minX - agent->position_.x())) + sqr(std::max(0.0f, agent->position_.x() - agentTree_[agentTree_[node].left].maxX)) + sqr(std::max(0.0f, agentTree_[agentTree_[node].left].minY - agent->position_.y())) + sqr(std::max(0.0f, agent->position_.y() - agentTree_[agentTree_[node].left].maxY));
264
265
const float distSqRight = sqr(std::max(0.0f, agentTree_[agentTree_[node].right].minX - agent->position_.x())) + sqr(std::max(0.0f, agent->position_.x() - agentTree_[agentTree_[node].right].maxX)) + sqr(std::max(0.0f, agentTree_[agentTree_[node].right].minY - agent->position_.y())) + sqr(std::max(0.0f, agent->position_.y() - agentTree_[agentTree_[node].right].maxY));
266
267
if (distSqLeft < distSqRight) {
268
if (distSqLeft < rangeSq) {
269
queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].left);
270
271
if (distSqRight < rangeSq) {
272
queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].right);
273
}
274
}
275
}
276
else {
277
if (distSqRight < rangeSq) {
278
queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].right);
279
280
if (distSqLeft < rangeSq) {
281
queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].left);
282
}
283
}
284
}
285
286
}
287
}
288
289
void KdTree2D::queryObstacleTreeRecursive(Agent2D *agent, float rangeSq, const ObstacleTreeNode *node) const
290
{
291
if (node == NULL) {
292
return;
293
}
294
else {
295
const Obstacle2D *const obstacle1 = node->obstacle;
296
const Obstacle2D *const obstacle2 = obstacle1->nextObstacle_;
297
298
const float agentLeftOfLine = leftOf(obstacle1->point_, obstacle2->point_, agent->position_);
299
300
queryObstacleTreeRecursive(agent, rangeSq, (agentLeftOfLine >= 0.0f ? node->left : node->right));
301
302
const float distSqLine = sqr(agentLeftOfLine) / absSq(obstacle2->point_ - obstacle1->point_);
303
304
if (distSqLine < rangeSq) {
305
if (agentLeftOfLine < 0.0f) {
306
/*
307
* Try obstacle at this node only if agent is on right side of
308
* obstacle (and can see obstacle).
309
*/
310
agent->insertObstacleNeighbor(node->obstacle, rangeSq);
311
}
312
313
/* Try other side of line. */
314
queryObstacleTreeRecursive(agent, rangeSq, (agentLeftOfLine >= 0.0f ? node->right : node->left));
315
316
}
317
}
318
}
319
320
bool KdTree2D::queryVisibility(const Vector2 &q1, const Vector2 &q2, float radius) const
321
{
322
return queryVisibilityRecursive(q1, q2, radius, obstacleTree_);
323
}
324
325
bool KdTree2D::queryVisibilityRecursive(const Vector2 &q1, const Vector2 &q2, float radius, const ObstacleTreeNode *node) const
326
{
327
if (node == NULL) {
328
return true;
329
}
330
else {
331
const Obstacle2D *const obstacle1 = node->obstacle;
332
const Obstacle2D *const obstacle2 = obstacle1->nextObstacle_;
333
334
const float q1LeftOfI = leftOf(obstacle1->point_, obstacle2->point_, q1);
335
const float q2LeftOfI = leftOf(obstacle1->point_, obstacle2->point_, q2);
336
const float invLengthI = 1.0f / absSq(obstacle2->point_ - obstacle1->point_);
337
338
if (q1LeftOfI >= 0.0f && q2LeftOfI >= 0.0f) {
339
return queryVisibilityRecursive(q1, q2, radius, node->left) && ((sqr(q1LeftOfI) * invLengthI >= sqr(radius) && sqr(q2LeftOfI) * invLengthI >= sqr(radius)) || queryVisibilityRecursive(q1, q2, radius, node->right));
340
}
341
else if (q1LeftOfI <= 0.0f && q2LeftOfI <= 0.0f) {
342
return queryVisibilityRecursive(q1, q2, radius, node->right) && ((sqr(q1LeftOfI) * invLengthI >= sqr(radius) && sqr(q2LeftOfI) * invLengthI >= sqr(radius)) || queryVisibilityRecursive(q1, q2, radius, node->left));
343
}
344
else if (q1LeftOfI >= 0.0f && q2LeftOfI <= 0.0f) {
345
/* One can see through obstacle from left to right. */
346
return queryVisibilityRecursive(q1, q2, radius, node->left) && queryVisibilityRecursive(q1, q2, radius, node->right);
347
}
348
else {
349
const float point1LeftOfQ = leftOf(q1, q2, obstacle1->point_);
350
const float point2LeftOfQ = leftOf(q1, q2, obstacle2->point_);
351
const float invLengthQ = 1.0f / absSq(q2 - q1);
352
353
return (point1LeftOfQ * point2LeftOfQ >= 0.0f && sqr(point1LeftOfQ) * invLengthQ > sqr(radius) && sqr(point2LeftOfQ) * invLengthQ > sqr(radius) && queryVisibilityRecursive(q1, q2, radius, node->left) && queryVisibilityRecursive(q1, q2, radius, node->right));
354
}
355
}
356
}
357
}
358
359