Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/rvo2/rvo2_3d/Vector3.h
9906 views
1
/*
2
* Vector3.h
3
* RVO2-3D Library
4
*
5
* Copyright 2008 University of North Carolina at Chapel Hill
6
*
7
* Licensed under the Apache License, Version 2.0 (the "License");
8
* you may not use this file except in compliance with the License.
9
* You may obtain a copy of the License at
10
*
11
* https://www.apache.org/licenses/LICENSE-2.0
12
*
13
* Unless required by applicable law or agreed to in writing, software
14
* distributed under the License is distributed on an "AS IS" BASIS,
15
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16
* See the License for the specific language governing permissions and
17
* limitations under the License.
18
*
19
* Please send all bug reports to <[email protected]>.
20
*
21
* The authors may be contacted via:
22
*
23
* Jur van den Berg, Stephen J. Guy, Jamie Snape, Ming C. Lin, Dinesh Manocha
24
* Dept. of Computer Science
25
* 201 S. Columbia St.
26
* Frederick P. Brooks, Jr. Computer Science Bldg.
27
* Chapel Hill, N.C. 27599-3175
28
* United States of America
29
*
30
* <https://gamma.cs.unc.edu/RVO2/>
31
*/
32
33
/**
34
* \file Vector3.h
35
* \brief Contains the Vector3 class.
36
*/
37
#ifndef RVO3D_VECTOR3_H_
38
#define RVO3D_VECTOR3_H_
39
40
#include <cmath>
41
#include <cstddef>
42
#include <ostream>
43
44
namespace RVO3D {
45
/**
46
* \brief Defines a three-dimensional vector.
47
*/
48
class Vector3 {
49
public:
50
/**
51
* \brief Constructs and initializes a three-dimensional vector instance to zero.
52
*/
53
inline Vector3()
54
{
55
val_[0] = 0.0f;
56
val_[1] = 0.0f;
57
val_[2] = 0.0f;
58
}
59
60
/**
61
* \brief Constructs and initializes a three-dimensional vector from the specified three-dimensional vector.
62
* \param vector The three-dimensional vector containing the xyz-coordinates.
63
*/
64
inline Vector3(const Vector3 &vector)
65
{
66
val_[0] = vector[0];
67
val_[1] = vector[1];
68
val_[2] = vector[2];
69
}
70
71
/**
72
* \brief Constructs and initializes a three-dimensional vector from the specified three-element array.
73
* \param val The three-element array containing the xyz-coordinates.
74
*/
75
inline explicit Vector3(const float val[3])
76
{
77
val_[0] = val[0];
78
val_[1] = val[1];
79
val_[2] = val[2];
80
}
81
82
/**
83
* \brief Constructs and initializes a three-dimensional vector from the specified xyz-coordinates.
84
* \param x The x-coordinate of the three-dimensional vector.
85
* \param y The y-coordinate of the three-dimensional vector.
86
* \param z The z-coordinate of the three-dimensional vector.
87
*/
88
inline Vector3(float x, float y, float z)
89
{
90
val_[0] = x;
91
val_[1] = y;
92
val_[2] = z;
93
}
94
95
/**
96
* \brief Returns the x-coordinate of this three-dimensional vector.
97
* \return The x-coordinate of the three-dimensional vector.
98
*/
99
inline float x() const { return val_[0]; }
100
101
/**
102
* \brief Returns the y-coordinate of this three-dimensional vector.
103
* \return The y-coordinate of the three-dimensional vector.
104
*/
105
inline float y() const { return val_[1]; }
106
107
/**
108
* \brief Returns the z-coordinate of this three-dimensional vector.
109
* \return The z-coordinate of the three-dimensional vector.
110
*/
111
inline float z() const { return val_[2]; }
112
113
/**
114
* \brief Returns the specified coordinate of this three-dimensional vector.
115
* \param i The coordinate that should be returned (0 <= i < 3).
116
* \return The specified coordinate of the three-dimensional vector.
117
*/
118
inline float operator[](size_t i) const { return val_[i]; }
119
120
/**
121
* \brief Returns a reference to the specified coordinate of this three-dimensional vector.
122
* \param i The coordinate to which a reference should be returned (0 <= i < 3).
123
* \return A reference to the specified coordinate of the three-dimensional vector.
124
*/
125
inline float &operator[](size_t i) { return val_[i]; }
126
127
/**
128
* \brief Computes the negation of this three-dimensional vector.
129
* \return The negation of this three-dimensional vector.
130
*/
131
inline Vector3 operator-() const
132
{
133
return Vector3(-val_[0], -val_[1], -val_[2]);
134
}
135
136
/**
137
* \brief Computes the dot product of this three-dimensional vector with the specified three-dimensional vector.
138
* \param vector The three-dimensional vector with which the dot product should be computed.
139
* \return The dot product of this three-dimensional vector with a specified three-dimensional vector.
140
*/
141
inline float operator*(const Vector3 &vector) const
142
{
143
return val_[0] * vector[0] + val_[1] * vector[1] + val_[2] * vector[2];
144
}
145
146
/**
147
* \brief Computes the scalar multiplication of this three-dimensional vector with the specified scalar value.
148
* \param scalar The scalar value with which the scalar multiplication should be computed.
149
* \return The scalar multiplication of this three-dimensional vector with a specified scalar value.
150
*/
151
inline Vector3 operator*(float scalar) const
152
{
153
return Vector3(val_[0] * scalar, val_[1] * scalar, val_[2] * scalar);
154
}
155
156
/**
157
* \brief Computes the scalar division of this three-dimensional vector with the specified scalar value.
158
* \param scalar The scalar value with which the scalar division should be computed.
159
* \return The scalar division of this three-dimensional vector with a specified scalar value.
160
*/
161
inline Vector3 operator/(float scalar) const
162
{
163
const float invScalar = 1.0f / scalar;
164
165
return Vector3(val_[0] * invScalar, val_[1] * invScalar, val_[2] * invScalar);
166
}
167
168
/**
169
* \brief Computes the vector sum of this three-dimensional vector with the specified three-dimensional vector.
170
* \param vector The three-dimensional vector with which the vector sum should be computed.
171
* \return The vector sum of this three-dimensional vector with a specified three-dimensional vector.
172
*/
173
inline Vector3 operator+(const Vector3 &vector) const
174
{
175
return Vector3(val_[0] + vector[0], val_[1] + vector[1], val_[2] + vector[2]);
176
}
177
178
/**
179
* \brief Computes the vector difference of this three-dimensional vector with the specified three-dimensional vector.
180
* \param vector The three-dimensional vector with which the vector difference should be computed.
181
* \return The vector difference of this three-dimensional vector with a specified three-dimensional vector.
182
*/
183
inline Vector3 operator-(const Vector3 &vector) const
184
{
185
return Vector3(val_[0] - vector[0], val_[1] - vector[1], val_[2] - vector[2]);
186
}
187
188
/**
189
* \brief Tests this three-dimensional vector for equality with the specified three-dimensional vector.
190
* \param vector The three-dimensional vector with which to test for equality.
191
* \return True if the three-dimensional vectors are equal.
192
*/
193
inline bool operator==(const Vector3 &vector) const
194
{
195
return val_[0] == vector[0] && val_[1] == vector[1] && val_[2] == vector[2];
196
}
197
198
/**
199
* \brief Tests this three-dimensional vector for inequality with the specified three-dimensional vector.
200
* \param vector The three-dimensional vector with which to test for inequality.
201
* \return True if the three-dimensional vectors are not equal.
202
*/
203
inline bool operator!=(const Vector3 &vector) const
204
{
205
return val_[0] != vector[0] || val_[1] != vector[1] || val_[2] != vector[2];
206
}
207
208
/**
209
* \brief Sets the value of this three-dimensional vector to the scalar multiplication of itself with the specified scalar value.
210
* \param scalar The scalar value with which the scalar multiplication should be computed.
211
* \return A reference to this three-dimensional vector.
212
*/
213
inline Vector3 &operator*=(float scalar)
214
{
215
val_[0] *= scalar;
216
val_[1] *= scalar;
217
val_[2] *= scalar;
218
219
return *this;
220
}
221
222
/**
223
* \brief Sets the value of this three-dimensional vector to the scalar division of itself with the specified scalar value.
224
* \param scalar The scalar value with which the scalar division should be computed.
225
* \return A reference to this three-dimensional vector.
226
*/
227
inline Vector3 &operator/=(float scalar)
228
{
229
const float invScalar = 1.0f / scalar;
230
231
val_[0] *= invScalar;
232
val_[1] *= invScalar;
233
val_[2] *= invScalar;
234
235
return *this;
236
}
237
238
/**
239
* \brief Sets the value of this three-dimensional vector to the vector
240
* sum of itself with the specified three-dimensional vector.
241
* \param vector The three-dimensional vector with which the vector sum should be computed.
242
* \return A reference to this three-dimensional vector.
243
*/
244
inline Vector3 &operator+=(const Vector3 &vector)
245
{
246
val_[0] += vector[0];
247
val_[1] += vector[1];
248
val_[2] += vector[2];
249
250
return *this;
251
}
252
253
/**
254
* \brief Sets the value of this three-dimensional vector to the vector difference of itself with the specified three-dimensional vector.
255
* \param vector The three-dimensional vector with which the vector difference should be computed.
256
* \return A reference to this three-dimensional vector.
257
*/
258
inline Vector3 &operator-=(const Vector3 &vector)
259
{
260
val_[0] -= vector[0];
261
val_[1] -= vector[1];
262
val_[2] -= vector[2];
263
264
return *this;
265
}
266
267
inline Vector3 &operator=(const Vector3 &vector)
268
{
269
val_[0] = vector[0];
270
val_[1] = vector[1];
271
val_[2] = vector[2];
272
273
return *this;
274
}
275
276
private:
277
float val_[3];
278
};
279
280
281
/**
282
* \relates Vector3
283
* \brief Computes the scalar multiplication of the specified three-dimensional vector with the specified scalar value.
284
* \param scalar The scalar value with which the scalar multiplication should be computed.
285
* \param vector The three-dimensional vector with which the scalar multiplication should be computed.
286
* \return The scalar multiplication of the three-dimensional vector with the scalar value.
287
*/
288
inline Vector3 operator*(float scalar, const Vector3 &vector)
289
{
290
return Vector3(scalar * vector[0], scalar * vector[1], scalar * vector[2]);
291
}
292
293
/**
294
* \relates Vector3
295
* \brief Computes the cross product of the specified three-dimensional vectors.
296
* \param vector1 The first vector with which the cross product should be computed.
297
* \param vector2 The second vector with which the cross product should be computed.
298
* \return The cross product of the two specified vectors.
299
*/
300
inline Vector3 cross(const Vector3 &vector1, const Vector3 &vector2)
301
{
302
return Vector3(vector1[1] * vector2[2] - vector1[2] * vector2[1], vector1[2] * vector2[0] - vector1[0] * vector2[2], vector1[0] * vector2[1] - vector1[1] * vector2[0]);
303
}
304
305
/**
306
* \relates Vector3
307
* \brief Inserts the specified three-dimensional vector into the specified output stream.
308
* \param os The output stream into which the three-dimensional vector should be inserted.
309
* \param vector The three-dimensional vector which to insert into the output stream.
310
* \return A reference to the output stream.
311
*/
312
inline std::ostream &operator<<(std::ostream &os, const Vector3 &vector)
313
{
314
os << "(" << vector[0] << "," << vector[1] << "," << vector[2] << ")";
315
316
return os;
317
}
318
319
/**
320
* \relates Vector3
321
* \brief Computes the length of a specified three-dimensional vector.
322
* \param vector The three-dimensional vector whose length is to be computed.
323
* \return The length of the three-dimensional vector.
324
*/
325
inline float abs(const Vector3 &vector)
326
{
327
return std::sqrt(vector * vector);
328
}
329
330
/**
331
* \relates Vector3
332
* \brief Computes the squared length of a specified three-dimensional vector.
333
* \param vector The three-dimensional vector whose squared length is to be computed.
334
* \return The squared length of the three-dimensional vector.
335
*/
336
inline float absSq(const Vector3 &vector)
337
{
338
return vector * vector;
339
}
340
341
/**
342
* \relates Vector3
343
* \brief Computes the normalization of the specified three-dimensional vector.
344
* \param vector The three-dimensional vector whose normalization is to be computed.
345
* \return The normalization of the three-dimensional vector.
346
*/
347
inline Vector3 normalize(const Vector3 &vector)
348
{
349
return vector / abs(vector);
350
}
351
}
352
353
#endif
354
355