Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/sdl/libm/e_exp.c
9905 views
1
#include "SDL_internal.h"
2
/*
3
* ====================================================
4
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5
*
6
* Developed at SunPro, a Sun Microsystems, Inc. business.
7
* Permission to use, copy, modify, and distribute this
8
* software is freely granted, provided that this notice
9
* is preserved.
10
* ====================================================
11
*/
12
13
/* __ieee754_exp(x)
14
* Returns the exponential of x.
15
*
16
* Method
17
* 1. Argument reduction:
18
* Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
19
* Given x, find r and integer k such that
20
*
21
* x = k*ln2 + r, |r| <= 0.5*ln2.
22
*
23
* Here r will be represented as r = hi-lo for better
24
* accuracy.
25
*
26
* 2. Approximation of exp(r) by a special rational function on
27
* the interval [0,0.34658]:
28
* Write
29
* R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
30
* We use a special Reme algorithm on [0,0.34658] to generate
31
* a polynomial of degree 5 to approximate R. The maximum error
32
* of this polynomial approximation is bounded by 2**-59. In
33
* other words,
34
* R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
35
* (where z=r*r, and the values of P1 to P5 are listed below)
36
* and
37
* | 5 | -59
38
* | 2.0+P1*z+...+P5*z - R(z) | <= 2
39
* | |
40
* The computation of exp(r) thus becomes
41
* 2*r
42
* exp(r) = 1 + -------
43
* R - r
44
* r*R1(r)
45
* = 1 + r + ----------- (for better accuracy)
46
* 2 - R1(r)
47
* where
48
* 2 4 10
49
* R1(r) = r - (P1*r + P2*r + ... + P5*r ).
50
*
51
* 3. Scale back to obtain exp(x):
52
* From step 1, we have
53
* exp(x) = 2^k * exp(r)
54
*
55
* Special cases:
56
* exp(INF) is INF, exp(NaN) is NaN;
57
* exp(-INF) is 0, and
58
* for finite argument, only exp(0)=1 is exact.
59
*
60
* Accuracy:
61
* according to an error analysis, the error is always less than
62
* 1 ulp (unit in the last place).
63
*
64
* Misc. info.
65
* For IEEE double
66
* if x > 7.09782712893383973096e+02 then exp(x) overflow
67
* if x < -7.45133219101941108420e+02 then exp(x) underflow
68
*
69
* Constants:
70
* The hexadecimal values are the intended ones for the following
71
* constants. The decimal values may be used, provided that the
72
* compiler will convert from decimal to binary accurately enough
73
* to produce the hexadecimal values shown.
74
*/
75
76
#include "math_libm.h"
77
#include "math_private.h"
78
79
#ifdef __WATCOMC__ /* Watcom defines huge=__huge */
80
#undef huge
81
#endif
82
83
static const double
84
one = 1.0,
85
halF[2] = {0.5,-0.5,},
86
huge = 1.0e+300,
87
twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/
88
o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
89
u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */
90
ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
91
-6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
92
ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
93
-1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
94
invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
95
P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
96
P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
97
P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
98
P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
99
P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
100
101
union {
102
Uint64 u64;
103
double d;
104
} inf_union = {
105
SDL_UINT64_C(0x7ff0000000000000) /* Binary representation of a 64-bit infinite double (sign=0, exponent=2047, mantissa=0) */
106
};
107
108
double __ieee754_exp(double x) /* default IEEE double exp */
109
{
110
double y;
111
double hi = 0.0;
112
double lo = 0.0;
113
double c;
114
double t;
115
int32_t k=0;
116
int32_t xsb;
117
u_int32_t hx;
118
119
GET_HIGH_WORD(hx,x);
120
xsb = (hx>>31)&1; /* sign bit of x */
121
hx &= 0x7fffffff; /* high word of |x| */
122
123
/* filter out non-finite argument */
124
if(hx >= 0x40862E42) { /* if |x|>=709.78... */
125
if(hx>=0x7ff00000) {
126
u_int32_t lx;
127
GET_LOW_WORD(lx,x);
128
if(((hx&0xfffff)|lx)!=0)
129
return x+x; /* NaN */
130
else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */
131
}
132
#if 1
133
if(x > o_threshold) return inf_union.d; /* overflow */
134
#elif 1
135
if(x > o_threshold) return huge*huge; /* overflow */
136
#else /* !!! FIXME: check this: "huge * huge" is a compiler warning, maybe they wanted +Inf? */
137
if(x > o_threshold) return INFINITY; /* overflow */
138
#endif
139
140
if(x < u_threshold) return twom1000*twom1000; /* underflow */
141
}
142
143
/* argument reduction */
144
if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
145
if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
146
hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
147
} else {
148
k = (int32_t) (invln2*x+halF[xsb]);
149
t = k;
150
hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */
151
lo = t*ln2LO[0];
152
}
153
x = hi - lo;
154
}
155
else if(hx < 0x3e300000) { /* when |x|<2**-28 */
156
if(huge+x>one) return one+x;/* trigger inexact */
157
}
158
else k = 0;
159
160
/* x is now in primary range */
161
t = x*x;
162
c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
163
if(k==0) return one-((x*c)/(c-2.0)-x);
164
else y = one-((lo-(x*c)/(2.0-c))-hi);
165
if(k >= -1021) {
166
u_int32_t hy;
167
GET_HIGH_WORD(hy,y);
168
SET_HIGH_WORD(y,hy+(k<<20)); /* add k to y's exponent */
169
return y;
170
} else {
171
u_int32_t hy;
172
GET_HIGH_WORD(hy,y);
173
SET_HIGH_WORD(y,hy+((k+1000)<<20)); /* add k to y's exponent */
174
return y*twom1000;
175
}
176
}
177
178
/*
179
* wrapper exp(x)
180
*/
181
#ifndef _IEEE_LIBM
182
double exp(double x)
183
{
184
static const double o_threshold = 7.09782712893383973096e+02; /* 0x40862E42, 0xFEFA39EF */
185
static const double u_threshold = -7.45133219101941108420e+02; /* 0xc0874910, 0xD52D3051 */
186
187
double z = __ieee754_exp(x);
188
if (_LIB_VERSION == _IEEE_)
189
return z;
190
if (isfinite(x)) {
191
if (x > o_threshold)
192
return __kernel_standard(x, x, 6); /* exp overflow */
193
if (x < u_threshold)
194
return __kernel_standard(x, x, 7); /* exp underflow */
195
}
196
return z;
197
}
198
#else
199
strong_alias(__ieee754_exp, exp)
200
#endif
201
libm_hidden_def(exp)
202
203