#include "SDL_internal.h"1/*2* ====================================================3* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.4*5* Developed at SunPro, a Sun Microsystems, Inc. business.6* Permission to use, copy, modify, and distribute this7* software is freely granted, provided that this notice8* is preserved.9* ====================================================10*/1112#if defined(_MSC_VER) /* Handle Microsoft VC++ compiler specifics. */13/* C4723: potential divide by zero. */14#pragma warning ( disable : 4723 )15#endif1617/* __ieee754_log(x)18* Return the logrithm of x19*20* Method :21* 1. Argument Reduction: find k and f such that22* x = 2^k * (1+f),23* where sqrt(2)/2 < 1+f < sqrt(2) .24*25* 2. Approximation of log(1+f).26* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)27* = 2s + 2/3 s**3 + 2/5 s**5 + .....,28* = 2s + s*R29* We use a special Reme algorithm on [0,0.1716] to generate30* a polynomial of degree 14 to approximate R The maximum error31* of this polynomial approximation is bounded by 2**-58.45. In32* other words,33* 2 4 6 8 10 12 1434* R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s35* (the values of Lg1 to Lg7 are listed in the program)36* and37* | 2 14 | -58.4538* | Lg1*s +...+Lg7*s - R(z) | <= 239* | |40* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.41* In order to guarantee error in log below 1ulp, we compute log42* by43* log(1+f) = f - s*(f - R) (if f is not too large)44* log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)45*46* 3. Finally, log(x) = k*ln2 + log(1+f).47* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))48* Here ln2 is split into two floating point number:49* ln2_hi + ln2_lo,50* where n*ln2_hi is always exact for |n| < 2000.51*52* Special cases:53* log(x) is NaN with signal if x < 0 (including -INF) ;54* log(+INF) is +INF; log(0) is -INF with signal;55* log(NaN) is that NaN with no signal.56*57* Accuracy:58* according to an error analysis, the error is always less than59* 1 ulp (unit in the last place).60*61* Constants:62* The hexadecimal values are the intended ones for the following63* constants. The decimal values may be used, provided that the64* compiler will convert from decimal to binary accurately enough65* to produce the hexadecimal values shown.66*/6768#include "math_libm.h"69#include "math_private.h"7071static const double72ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */73ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */74two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */75Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */76Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */77Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */78Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */79Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */80Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */81Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */8283static const double zero = 0.0;8485double attribute_hidden __ieee754_log(double x)86{87double hfsq,f,s,z,R,w,t1,t2,dk;88int32_t k,hx,i,j;89u_int32_t lx;9091EXTRACT_WORDS(hx,lx,x);9293k=0;94if (hx < 0x00100000) { /* x < 2**-1022 */95if (((hx&0x7fffffff)|lx)==0)96return -two54/zero; /* log(+-0)=-inf */97if (hx<0) return (x-x)/zero; /* log(-#) = NaN */98k -= 54; x *= two54; /* subnormal number, scale up x */99GET_HIGH_WORD(hx,x);100}101if (hx >= 0x7ff00000) return x+x;102k += (hx>>20)-1023;103hx &= 0x000fffff;104i = (hx+0x95f64)&0x100000;105SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */106k += (i>>20);107f = x-1.0;108if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */109if(f==zero) {if(k==0) return zero; else {dk=(double)k;110return dk*ln2_hi+dk*ln2_lo;}111}112R = f*f*(0.5-0.33333333333333333*f);113if(k==0) return f-R; else {dk=(double)k;114return dk*ln2_hi-((R-dk*ln2_lo)-f);}115}116s = f/(2.0+f);117dk = (double)k;118z = s*s;119i = hx-0x6147a;120w = z*z;121j = 0x6b851-hx;122t1= w*(Lg2+w*(Lg4+w*Lg6));123t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));124i |= j;125R = t2+t1;126if(i>0) {127hfsq=0.5*f*f;128if(k==0) return f-(hfsq-s*(hfsq+R)); else129return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);130} else {131if(k==0) return f-s*(f-R); else132return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);133}134}135136/*137* wrapper log(x)138*/139#ifndef _IEEE_LIBM140double log(double x)141{142double z = __ieee754_log(x);143if (_LIB_VERSION == _IEEE_ || isnan(x) || x > 0.0)144return z;145if (x == 0.0)146return __kernel_standard(x, x, 16); /* log(0) */147return __kernel_standard(x, x, 17); /* log(x<0) */148}149#else150strong_alias(__ieee754_log, log)151#endif152libm_hidden_def(log)153154155