Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/sdl/libm/e_log.c
9903 views
1
#include "SDL_internal.h"
2
/*
3
* ====================================================
4
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5
*
6
* Developed at SunPro, a Sun Microsystems, Inc. business.
7
* Permission to use, copy, modify, and distribute this
8
* software is freely granted, provided that this notice
9
* is preserved.
10
* ====================================================
11
*/
12
13
#if defined(_MSC_VER) /* Handle Microsoft VC++ compiler specifics. */
14
/* C4723: potential divide by zero. */
15
#pragma warning ( disable : 4723 )
16
#endif
17
18
/* __ieee754_log(x)
19
* Return the logrithm of x
20
*
21
* Method :
22
* 1. Argument Reduction: find k and f such that
23
* x = 2^k * (1+f),
24
* where sqrt(2)/2 < 1+f < sqrt(2) .
25
*
26
* 2. Approximation of log(1+f).
27
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
28
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
29
* = 2s + s*R
30
* We use a special Reme algorithm on [0,0.1716] to generate
31
* a polynomial of degree 14 to approximate R The maximum error
32
* of this polynomial approximation is bounded by 2**-58.45. In
33
* other words,
34
* 2 4 6 8 10 12 14
35
* R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
36
* (the values of Lg1 to Lg7 are listed in the program)
37
* and
38
* | 2 14 | -58.45
39
* | Lg1*s +...+Lg7*s - R(z) | <= 2
40
* | |
41
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
42
* In order to guarantee error in log below 1ulp, we compute log
43
* by
44
* log(1+f) = f - s*(f - R) (if f is not too large)
45
* log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
46
*
47
* 3. Finally, log(x) = k*ln2 + log(1+f).
48
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
49
* Here ln2 is split into two floating point number:
50
* ln2_hi + ln2_lo,
51
* where n*ln2_hi is always exact for |n| < 2000.
52
*
53
* Special cases:
54
* log(x) is NaN with signal if x < 0 (including -INF) ;
55
* log(+INF) is +INF; log(0) is -INF with signal;
56
* log(NaN) is that NaN with no signal.
57
*
58
* Accuracy:
59
* according to an error analysis, the error is always less than
60
* 1 ulp (unit in the last place).
61
*
62
* Constants:
63
* The hexadecimal values are the intended ones for the following
64
* constants. The decimal values may be used, provided that the
65
* compiler will convert from decimal to binary accurately enough
66
* to produce the hexadecimal values shown.
67
*/
68
69
#include "math_libm.h"
70
#include "math_private.h"
71
72
static const double
73
ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
74
ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
75
two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
76
Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
77
Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
78
Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
79
Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
80
Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
81
Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
82
Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
83
84
static const double zero = 0.0;
85
86
double attribute_hidden __ieee754_log(double x)
87
{
88
double hfsq,f,s,z,R,w,t1,t2,dk;
89
int32_t k,hx,i,j;
90
u_int32_t lx;
91
92
EXTRACT_WORDS(hx,lx,x);
93
94
k=0;
95
if (hx < 0x00100000) { /* x < 2**-1022 */
96
if (((hx&0x7fffffff)|lx)==0)
97
return -two54/zero; /* log(+-0)=-inf */
98
if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
99
k -= 54; x *= two54; /* subnormal number, scale up x */
100
GET_HIGH_WORD(hx,x);
101
}
102
if (hx >= 0x7ff00000) return x+x;
103
k += (hx>>20)-1023;
104
hx &= 0x000fffff;
105
i = (hx+0x95f64)&0x100000;
106
SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */
107
k += (i>>20);
108
f = x-1.0;
109
if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */
110
if(f==zero) {if(k==0) return zero; else {dk=(double)k;
111
return dk*ln2_hi+dk*ln2_lo;}
112
}
113
R = f*f*(0.5-0.33333333333333333*f);
114
if(k==0) return f-R; else {dk=(double)k;
115
return dk*ln2_hi-((R-dk*ln2_lo)-f);}
116
}
117
s = f/(2.0+f);
118
dk = (double)k;
119
z = s*s;
120
i = hx-0x6147a;
121
w = z*z;
122
j = 0x6b851-hx;
123
t1= w*(Lg2+w*(Lg4+w*Lg6));
124
t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
125
i |= j;
126
R = t2+t1;
127
if(i>0) {
128
hfsq=0.5*f*f;
129
if(k==0) return f-(hfsq-s*(hfsq+R)); else
130
return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
131
} else {
132
if(k==0) return f-s*(f-R); else
133
return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
134
}
135
}
136
137
/*
138
* wrapper log(x)
139
*/
140
#ifndef _IEEE_LIBM
141
double log(double x)
142
{
143
double z = __ieee754_log(x);
144
if (_LIB_VERSION == _IEEE_ || isnan(x) || x > 0.0)
145
return z;
146
if (x == 0.0)
147
return __kernel_standard(x, x, 16); /* log(0) */
148
return __kernel_standard(x, x, 17); /* log(x<0) */
149
}
150
#else
151
strong_alias(__ieee754_log, log)
152
#endif
153
libm_hidden_def(log)
154
155