Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/sdl/libm/e_pow.c
9905 views
1
#include "SDL_internal.h"
2
/*
3
* ====================================================
4
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5
*
6
* Developed at SunPro, a Sun Microsystems, Inc. business.
7
* Permission to use, copy, modify, and distribute this
8
* software is freely granted, provided that this notice
9
* is preserved.
10
* ====================================================
11
*/
12
13
/* __ieee754_pow(x,y) return x**y
14
*
15
* n
16
* Method: Let x = 2 * (1+f)
17
* 1. Compute and return log2(x) in two pieces:
18
* log2(x) = w1 + w2,
19
* where w1 has 53-24 = 29 bit trailing zeros.
20
* 2. Perform y*log2(x) = n+y' by simulating muti-precision
21
* arithmetic, where |y'|<=0.5.
22
* 3. Return x**y = 2**n*exp(y'*log2)
23
*
24
* Special cases:
25
* 1. +-1 ** anything is 1.0
26
* 2. +-1 ** +-INF is 1.0
27
* 3. (anything) ** 0 is 1
28
* 4. (anything) ** 1 is itself
29
* 5. (anything) ** NAN is NAN
30
* 6. NAN ** (anything except 0) is NAN
31
* 7. +-(|x| > 1) ** +INF is +INF
32
* 8. +-(|x| > 1) ** -INF is +0
33
* 9. +-(|x| < 1) ** +INF is +0
34
* 10 +-(|x| < 1) ** -INF is +INF
35
* 11. +0 ** (+anything except 0, NAN) is +0
36
* 12. -0 ** (+anything except 0, NAN, odd integer) is +0
37
* 13. +0 ** (-anything except 0, NAN) is +INF
38
* 14. -0 ** (-anything except 0, NAN, odd integer) is +INF
39
* 15. -0 ** (odd integer) = -( +0 ** (odd integer) )
40
* 16. +INF ** (+anything except 0,NAN) is +INF
41
* 17. +INF ** (-anything except 0,NAN) is +0
42
* 18. -INF ** (anything) = -0 ** (-anything)
43
* 19. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
44
* 20. (-anything except 0 and inf) ** (non-integer) is NAN
45
*
46
* Accuracy:
47
* pow(x,y) returns x**y nearly rounded. In particular
48
* pow(integer,integer)
49
* always returns the correct integer provided it is
50
* representable.
51
*
52
* Constants :
53
* The hexadecimal values are the intended ones for the following
54
* constants. The decimal values may be used, provided that the
55
* compiler will convert from decimal to binary accurately enough
56
* to produce the hexadecimal values shown.
57
*/
58
59
#include "math_libm.h"
60
#include "math_private.h"
61
62
#if defined(_MSC_VER) /* Handle Microsoft VC++ compiler specifics. */
63
/* C4756: overflow in constant arithmetic */
64
#pragma warning ( disable : 4756 )
65
#endif
66
67
#ifdef __WATCOMC__ /* Watcom defines huge=__huge */
68
#undef huge
69
#endif
70
71
static const double
72
bp[] = {1.0, 1.5,},
73
dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
74
dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
75
zero = 0.0,
76
one = 1.0,
77
two = 2.0,
78
two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */
79
huge = 1.0e300,
80
tiny = 1.0e-300,
81
/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
82
L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
83
L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
84
L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
85
L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
86
L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
87
L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
88
P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
89
P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
90
P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
91
P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
92
P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
93
lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
94
lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
95
lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
96
ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
97
cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
98
cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
99
cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
100
ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
101
ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
102
ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
103
104
double attribute_hidden __ieee754_pow(double x, double y)
105
{
106
double z,ax,z_h,z_l,p_h,p_l;
107
double y1,t1,t2,r,s,t,u,v,w;
108
int32_t i,j,k,yisint,n;
109
int32_t hx,hy,ix,iy;
110
u_int32_t lx,ly;
111
112
EXTRACT_WORDS(hx,lx,x);
113
/* x==1: 1**y = 1 (even if y is NaN) */
114
if (hx==0x3ff00000 && lx==0) {
115
return x;
116
}
117
ix = hx&0x7fffffff;
118
119
EXTRACT_WORDS(hy,ly,y);
120
iy = hy&0x7fffffff;
121
122
/* y==zero: x**0 = 1 */
123
if((iy|ly)==0) return one;
124
125
/* +-NaN return x+y */
126
if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
127
iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
128
return x+y;
129
130
/* determine if y is an odd int when x < 0
131
* yisint = 0 ... y is not an integer
132
* yisint = 1 ... y is an odd int
133
* yisint = 2 ... y is an even int
134
*/
135
yisint = 0;
136
if(hx<0) {
137
if(iy>=0x43400000) yisint = 2; /* even integer y */
138
else if(iy>=0x3ff00000) {
139
k = (iy>>20)-0x3ff; /* exponent */
140
if(k>20) {
141
j = ly>>(52-k);
142
if(((u_int32_t)j<<(52-k))==ly) yisint = 2-(j&1);
143
} else if(ly==0) {
144
j = iy>>(20-k);
145
if((j<<(20-k))==iy) yisint = 2-(j&1);
146
}
147
}
148
}
149
150
/* special value of y */
151
if(ly==0) {
152
if (iy==0x7ff00000) { /* y is +-inf */
153
if (((ix-0x3ff00000)|lx)==0)
154
return one; /* +-1**+-inf is 1 (yes, weird rule) */
155
if (ix >= 0x3ff00000) /* (|x|>1)**+-inf = inf,0 */
156
return (hy>=0) ? y : zero;
157
/* (|x|<1)**-,+inf = inf,0 */
158
return (hy<0) ? -y : zero;
159
}
160
if(iy==0x3ff00000) { /* y is +-1 */
161
if(hy<0) return one/x; else return x;
162
}
163
if(hy==0x40000000) return x*x; /* y is 2 */
164
if(hy==0x3fe00000) { /* y is 0.5 */
165
if(hx>=0) /* x >= +0 */
166
return __ieee754_sqrt(x);
167
}
168
}
169
170
ax = fabs(x);
171
/* special value of x */
172
if(lx==0) {
173
if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
174
z = ax; /*x is +-0,+-inf,+-1*/
175
if(hy<0) z = one/z; /* z = (1/|x|) */
176
if(hx<0) {
177
if(((ix-0x3ff00000)|yisint)==0) {
178
z = (z-z)/(z-z); /* (-1)**non-int is NaN */
179
} else if(yisint==1)
180
z = -z; /* (x<0)**odd = -(|x|**odd) */
181
}
182
return z;
183
}
184
}
185
186
/* (x<0)**(non-int) is NaN */
187
if(((((u_int32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x);
188
189
/* |y| is huge */
190
if(iy>0x41e00000) { /* if |y| > 2**31 */
191
if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */
192
if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
193
if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
194
}
195
/* over/underflow if x is not close to one */
196
if(ix<0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
197
if(ix>0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
198
/* now |1-x| is tiny <= 2**-20, suffice to compute
199
log(x) by x-x^2/2+x^3/3-x^4/4 */
200
t = x-1; /* t has 20 trailing zeros */
201
w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
202
u = ivln2_h*t; /* ivln2_h has 21 sig. bits */
203
v = t*ivln2_l-w*ivln2;
204
t1 = u+v;
205
SET_LOW_WORD(t1,0);
206
t2 = v-(t1-u);
207
} else {
208
double s2,s_h,s_l,t_h,t_l;
209
n = 0;
210
/* take care subnormal number */
211
if(ix<0x00100000)
212
{ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); }
213
n += ((ix)>>20)-0x3ff;
214
j = ix&0x000fffff;
215
/* determine interval */
216
ix = j|0x3ff00000; /* normalize ix */
217
if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */
218
else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */
219
else {k=0;n+=1;ix -= 0x00100000;}
220
SET_HIGH_WORD(ax,ix);
221
222
/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
223
u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
224
v = one/(ax+bp[k]);
225
s = u*v;
226
s_h = s;
227
SET_LOW_WORD(s_h,0);
228
/* t_h=ax+bp[k] High */
229
t_h = zero;
230
SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18));
231
t_l = ax - (t_h-bp[k]);
232
s_l = v*((u-s_h*t_h)-s_h*t_l);
233
/* compute log(ax) */
234
s2 = s*s;
235
r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
236
r += s_l*(s_h+s);
237
s2 = s_h*s_h;
238
t_h = 3.0+s2+r;
239
SET_LOW_WORD(t_h,0);
240
t_l = r-((t_h-3.0)-s2);
241
/* u+v = s*(1+...) */
242
u = s_h*t_h;
243
v = s_l*t_h+t_l*s;
244
/* 2/(3log2)*(s+...) */
245
p_h = u+v;
246
SET_LOW_WORD(p_h,0);
247
p_l = v-(p_h-u);
248
z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
249
z_l = cp_l*p_h+p_l*cp+dp_l[k];
250
/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
251
t = (double)n;
252
t1 = (((z_h+z_l)+dp_h[k])+t);
253
SET_LOW_WORD(t1,0);
254
t2 = z_l-(((t1-t)-dp_h[k])-z_h);
255
}
256
257
s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
258
if(((((u_int32_t)hx>>31)-1)|(yisint-1))==0)
259
s = -one;/* (-ve)**(odd int) */
260
261
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
262
y1 = y;
263
SET_LOW_WORD(y1,0);
264
p_l = (y-y1)*t1+y*t2;
265
p_h = y1*t1;
266
z = p_l+p_h;
267
EXTRACT_WORDS(j,i,z);
268
if (j>=0x40900000) { /* z >= 1024 */
269
if(((j-0x40900000)|i)!=0) /* if z > 1024 */
270
return s*huge*huge; /* overflow */
271
else {
272
if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */
273
}
274
} else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */
275
if(((j-0xc090cc00)|i)!=0) /* z < -1075 */
276
return s*tiny*tiny; /* underflow */
277
else {
278
if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */
279
}
280
}
281
/*
282
* compute 2**(p_h+p_l)
283
*/
284
i = j&0x7fffffff;
285
k = (i>>20)-0x3ff;
286
n = 0;
287
if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
288
n = j+(0x00100000>>(k+1));
289
k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */
290
t = zero;
291
SET_HIGH_WORD(t,n&~(0x000fffff>>k));
292
n = ((n&0x000fffff)|0x00100000)>>(20-k);
293
if(j<0) n = -n;
294
p_h -= t;
295
}
296
t = p_l+p_h;
297
SET_LOW_WORD(t,0);
298
u = t*lg2_h;
299
v = (p_l-(t-p_h))*lg2+t*lg2_l;
300
z = u+v;
301
w = v-(z-u);
302
t = z*z;
303
t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
304
r = (z*t1)/(t1-two)-(w+z*w);
305
z = one-(r-z);
306
GET_HIGH_WORD(j,z);
307
j += (n<<20);
308
if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */
309
else SET_HIGH_WORD(z,j);
310
return s*z;
311
}
312
313
/*
314
* wrapper pow(x,y) return x**y
315
*/
316
#ifndef _IEEE_LIBM
317
double pow(double x, double y)
318
{
319
double z = __ieee754_pow(x, y);
320
if (_LIB_VERSION == _IEEE_|| isnan(y))
321
return z;
322
if (isnan(x)) {
323
if (y == 0.0)
324
return __kernel_standard(x, y, 42); /* pow(NaN,0.0) */
325
return z;
326
}
327
if (x == 0.0) {
328
if (y == 0.0)
329
return __kernel_standard(x, y, 20); /* pow(0.0,0.0) */
330
if (isfinite(y) && y < 0.0)
331
return __kernel_standard(x,y,23); /* pow(0.0,negative) */
332
return z;
333
}
334
if (!isfinite(z)) {
335
if (isfinite(x) && isfinite(y)) {
336
if (isnan(z))
337
return __kernel_standard(x, y, 24); /* pow neg**non-int */
338
return __kernel_standard(x, y, 21); /* pow overflow */
339
}
340
}
341
if (z == 0.0 && isfinite(x) && isfinite(y))
342
return __kernel_standard(x, y, 22); /* pow underflow */
343
return z;
344
}
345
#else
346
strong_alias(__ieee754_pow, pow)
347
#endif
348
libm_hidden_def(pow)
349
350