#include "SDL_internal.h"1/*2* ====================================================3* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.4*5* Developed at SunPro, a Sun Microsystems, Inc. business.6* Permission to use, copy, modify, and distribute this7* software is freely granted, provided that this notice8* is preserved.9* ====================================================10*/1112/* __ieee754_pow(x,y) return x**y13*14* n15* Method: Let x = 2 * (1+f)16* 1. Compute and return log2(x) in two pieces:17* log2(x) = w1 + w2,18* where w1 has 53-24 = 29 bit trailing zeros.19* 2. Perform y*log2(x) = n+y' by simulating muti-precision20* arithmetic, where |y'|<=0.5.21* 3. Return x**y = 2**n*exp(y'*log2)22*23* Special cases:24* 1. +-1 ** anything is 1.025* 2. +-1 ** +-INF is 1.026* 3. (anything) ** 0 is 127* 4. (anything) ** 1 is itself28* 5. (anything) ** NAN is NAN29* 6. NAN ** (anything except 0) is NAN30* 7. +-(|x| > 1) ** +INF is +INF31* 8. +-(|x| > 1) ** -INF is +032* 9. +-(|x| < 1) ** +INF is +033* 10 +-(|x| < 1) ** -INF is +INF34* 11. +0 ** (+anything except 0, NAN) is +035* 12. -0 ** (+anything except 0, NAN, odd integer) is +036* 13. +0 ** (-anything except 0, NAN) is +INF37* 14. -0 ** (-anything except 0, NAN, odd integer) is +INF38* 15. -0 ** (odd integer) = -( +0 ** (odd integer) )39* 16. +INF ** (+anything except 0,NAN) is +INF40* 17. +INF ** (-anything except 0,NAN) is +041* 18. -INF ** (anything) = -0 ** (-anything)42* 19. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)43* 20. (-anything except 0 and inf) ** (non-integer) is NAN44*45* Accuracy:46* pow(x,y) returns x**y nearly rounded. In particular47* pow(integer,integer)48* always returns the correct integer provided it is49* representable.50*51* Constants :52* The hexadecimal values are the intended ones for the following53* constants. The decimal values may be used, provided that the54* compiler will convert from decimal to binary accurately enough55* to produce the hexadecimal values shown.56*/5758#include "math_libm.h"59#include "math_private.h"6061#if defined(_MSC_VER) /* Handle Microsoft VC++ compiler specifics. */62/* C4756: overflow in constant arithmetic */63#pragma warning ( disable : 4756 )64#endif6566#ifdef __WATCOMC__ /* Watcom defines huge=__huge */67#undef huge68#endif6970static const double71bp[] = {1.0, 1.5,},72dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */73dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */74zero = 0.0,75one = 1.0,76two = 2.0,77two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */78huge = 1.0e300,79tiny = 1.0e-300,80/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */81L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */82L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */83L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */84L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */85L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */86L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */87P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */88P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */89P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */90P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */91P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */92lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */93lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */94lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */95ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */96cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */97cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */98cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/99ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */100ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/101ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/102103double attribute_hidden __ieee754_pow(double x, double y)104{105double z,ax,z_h,z_l,p_h,p_l;106double y1,t1,t2,r,s,t,u,v,w;107int32_t i,j,k,yisint,n;108int32_t hx,hy,ix,iy;109u_int32_t lx,ly;110111EXTRACT_WORDS(hx,lx,x);112/* x==1: 1**y = 1 (even if y is NaN) */113if (hx==0x3ff00000 && lx==0) {114return x;115}116ix = hx&0x7fffffff;117118EXTRACT_WORDS(hy,ly,y);119iy = hy&0x7fffffff;120121/* y==zero: x**0 = 1 */122if((iy|ly)==0) return one;123124/* +-NaN return x+y */125if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||126iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))127return x+y;128129/* determine if y is an odd int when x < 0130* yisint = 0 ... y is not an integer131* yisint = 1 ... y is an odd int132* yisint = 2 ... y is an even int133*/134yisint = 0;135if(hx<0) {136if(iy>=0x43400000) yisint = 2; /* even integer y */137else if(iy>=0x3ff00000) {138k = (iy>>20)-0x3ff; /* exponent */139if(k>20) {140j = ly>>(52-k);141if(((u_int32_t)j<<(52-k))==ly) yisint = 2-(j&1);142} else if(ly==0) {143j = iy>>(20-k);144if((j<<(20-k))==iy) yisint = 2-(j&1);145}146}147}148149/* special value of y */150if(ly==0) {151if (iy==0x7ff00000) { /* y is +-inf */152if (((ix-0x3ff00000)|lx)==0)153return one; /* +-1**+-inf is 1 (yes, weird rule) */154if (ix >= 0x3ff00000) /* (|x|>1)**+-inf = inf,0 */155return (hy>=0) ? y : zero;156/* (|x|<1)**-,+inf = inf,0 */157return (hy<0) ? -y : zero;158}159if(iy==0x3ff00000) { /* y is +-1 */160if(hy<0) return one/x; else return x;161}162if(hy==0x40000000) return x*x; /* y is 2 */163if(hy==0x3fe00000) { /* y is 0.5 */164if(hx>=0) /* x >= +0 */165return __ieee754_sqrt(x);166}167}168169ax = fabs(x);170/* special value of x */171if(lx==0) {172if(ix==0x7ff00000||ix==0||ix==0x3ff00000){173z = ax; /*x is +-0,+-inf,+-1*/174if(hy<0) z = one/z; /* z = (1/|x|) */175if(hx<0) {176if(((ix-0x3ff00000)|yisint)==0) {177z = (z-z)/(z-z); /* (-1)**non-int is NaN */178} else if(yisint==1)179z = -z; /* (x<0)**odd = -(|x|**odd) */180}181return z;182}183}184185/* (x<0)**(non-int) is NaN */186if(((((u_int32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x);187188/* |y| is huge */189if(iy>0x41e00000) { /* if |y| > 2**31 */190if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */191if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;192if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;193}194/* over/underflow if x is not close to one */195if(ix<0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;196if(ix>0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;197/* now |1-x| is tiny <= 2**-20, suffice to compute198log(x) by x-x^2/2+x^3/3-x^4/4 */199t = x-1; /* t has 20 trailing zeros */200w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));201u = ivln2_h*t; /* ivln2_h has 21 sig. bits */202v = t*ivln2_l-w*ivln2;203t1 = u+v;204SET_LOW_WORD(t1,0);205t2 = v-(t1-u);206} else {207double s2,s_h,s_l,t_h,t_l;208n = 0;209/* take care subnormal number */210if(ix<0x00100000)211{ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); }212n += ((ix)>>20)-0x3ff;213j = ix&0x000fffff;214/* determine interval */215ix = j|0x3ff00000; /* normalize ix */216if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */217else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */218else {k=0;n+=1;ix -= 0x00100000;}219SET_HIGH_WORD(ax,ix);220221/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */222u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */223v = one/(ax+bp[k]);224s = u*v;225s_h = s;226SET_LOW_WORD(s_h,0);227/* t_h=ax+bp[k] High */228t_h = zero;229SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18));230t_l = ax - (t_h-bp[k]);231s_l = v*((u-s_h*t_h)-s_h*t_l);232/* compute log(ax) */233s2 = s*s;234r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));235r += s_l*(s_h+s);236s2 = s_h*s_h;237t_h = 3.0+s2+r;238SET_LOW_WORD(t_h,0);239t_l = r-((t_h-3.0)-s2);240/* u+v = s*(1+...) */241u = s_h*t_h;242v = s_l*t_h+t_l*s;243/* 2/(3log2)*(s+...) */244p_h = u+v;245SET_LOW_WORD(p_h,0);246p_l = v-(p_h-u);247z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */248z_l = cp_l*p_h+p_l*cp+dp_l[k];249/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */250t = (double)n;251t1 = (((z_h+z_l)+dp_h[k])+t);252SET_LOW_WORD(t1,0);253t2 = z_l-(((t1-t)-dp_h[k])-z_h);254}255256s = one; /* s (sign of result -ve**odd) = -1 else = 1 */257if(((((u_int32_t)hx>>31)-1)|(yisint-1))==0)258s = -one;/* (-ve)**(odd int) */259260/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */261y1 = y;262SET_LOW_WORD(y1,0);263p_l = (y-y1)*t1+y*t2;264p_h = y1*t1;265z = p_l+p_h;266EXTRACT_WORDS(j,i,z);267if (j>=0x40900000) { /* z >= 1024 */268if(((j-0x40900000)|i)!=0) /* if z > 1024 */269return s*huge*huge; /* overflow */270else {271if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */272}273} else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */274if(((j-0xc090cc00)|i)!=0) /* z < -1075 */275return s*tiny*tiny; /* underflow */276else {277if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */278}279}280/*281* compute 2**(p_h+p_l)282*/283i = j&0x7fffffff;284k = (i>>20)-0x3ff;285n = 0;286if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */287n = j+(0x00100000>>(k+1));288k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */289t = zero;290SET_HIGH_WORD(t,n&~(0x000fffff>>k));291n = ((n&0x000fffff)|0x00100000)>>(20-k);292if(j<0) n = -n;293p_h -= t;294}295t = p_l+p_h;296SET_LOW_WORD(t,0);297u = t*lg2_h;298v = (p_l-(t-p_h))*lg2+t*lg2_l;299z = u+v;300w = v-(z-u);301t = z*z;302t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));303r = (z*t1)/(t1-two)-(w+z*w);304z = one-(r-z);305GET_HIGH_WORD(j,z);306j += (n<<20);307if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */308else SET_HIGH_WORD(z,j);309return s*z;310}311312/*313* wrapper pow(x,y) return x**y314*/315#ifndef _IEEE_LIBM316double pow(double x, double y)317{318double z = __ieee754_pow(x, y);319if (_LIB_VERSION == _IEEE_|| isnan(y))320return z;321if (isnan(x)) {322if (y == 0.0)323return __kernel_standard(x, y, 42); /* pow(NaN,0.0) */324return z;325}326if (x == 0.0) {327if (y == 0.0)328return __kernel_standard(x, y, 20); /* pow(0.0,0.0) */329if (isfinite(y) && y < 0.0)330return __kernel_standard(x,y,23); /* pow(0.0,negative) */331return z;332}333if (!isfinite(z)) {334if (isfinite(x) && isfinite(y)) {335if (isnan(z))336return __kernel_standard(x, y, 24); /* pow neg**non-int */337return __kernel_standard(x, y, 21); /* pow overflow */338}339}340if (z == 0.0 && isfinite(x) && isfinite(y))341return __kernel_standard(x, y, 22); /* pow underflow */342return z;343}344#else345strong_alias(__ieee754_pow, pow)346#endif347libm_hidden_def(pow)348349350