#include "SDL_internal.h"1/*2* ====================================================3* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.4*5* Developed at SunPro, a Sun Microsystems, Inc. business.6* Permission to use, copy, modify, and distribute this7* software is freely granted, provided that this notice8* is preserved.9* ====================================================10*/1112/* __ieee754_sqrt(x)13* Return correctly rounded sqrt.14* ------------------------------------------15* | Use the hardware sqrt if you have one |16* ------------------------------------------17* Method:18* Bit by bit method using integer arithmetic. (Slow, but portable)19* 1. Normalization20* Scale x to y in [1,4) with even powers of 2:21* find an integer k such that 1 <= (y=x*2^(2k)) < 4, then22* sqrt(x) = 2^k * sqrt(y)23* 2. Bit by bit computation24* Let q = sqrt(y) truncated to i bit after binary point (q = 1),25* i 026* i+1 227* s = 2*q , and y = 2 * ( y - q ). (1)28* i i i i29*30* To compute q from q , one checks whether31* i+1 i32*33* -(i+1) 234* (q + 2 ) <= y. (2)35* i36* -(i+1)37* If (2) is false, then q = q ; otherwise q = q + 2 .38* i+1 i i+1 i39*40* With some algebric manipulation, it is not difficult to see41* that (2) is equivalent to42* -(i+1)43* s + 2 <= y (3)44* i i45*46* The advantage of (3) is that s and y can be computed by47* i i48* the following recurrence formula:49* if (3) is false50*51* s = s , y = y ; (4)52* i+1 i i+1 i53*54* otherwise,55* -i -(i+1)56* s = s + 2 , y = y - s - 2 (5)57* i+1 i i+1 i i58*59* One may easily use induction to prove (4) and (5).60* Note. Since the left hand side of (3) contain only i+2 bits,61* it does not necessary to do a full (53-bit) comparison62* in (3).63* 3. Final rounding64* After generating the 53 bits result, we compute one more bit.65* Together with the remainder, we can decide whether the66* result is exact, bigger than 1/2ulp, or less than 1/2ulp67* (it will never equal to 1/2ulp).68* The rounding mode can be detected by checking whether69* huge + tiny is equal to huge, and whether huge - tiny is70* equal to huge for some floating point number "huge" and "tiny".71*72* Special cases:73* sqrt(+-0) = +-0 ... exact74* sqrt(inf) = inf75* sqrt(-ve) = NaN ... with invalid signal76* sqrt(NaN) = NaN ... with invalid signal for signaling NaN77*78* Other methods : see the appended file at the end of the program below.79*---------------80*/8182#include "math_libm.h"83#include "math_private.h"8485static const double one = 1.0, tiny = 1.0e-300;8687double attribute_hidden __ieee754_sqrt(double x)88{89double z;90int32_t sign = (int)0x80000000;91int32_t ix0,s0,q,m,t,i;92u_int32_t r,t1,s1,ix1,q1;9394EXTRACT_WORDS(ix0,ix1,x);9596/* take care of Inf and NaN */97if((ix0&0x7ff00000)==0x7ff00000) {98return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf99sqrt(-inf)=sNaN */100}101/* take care of zero */102if(ix0<=0) {103if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */104else if(ix0<0)105return (x-x)/(x-x); /* sqrt(-ve) = sNaN */106}107/* normalize x */108m = (ix0>>20);109if(m==0) { /* subnormal x */110while(ix0==0) {111m -= 21;112ix0 |= (ix1>>11); ix1 <<= 21;113}114for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;115m -= i-1;116ix0 |= (ix1>>(32-i));117ix1 <<= i;118}119m -= 1023; /* unbias exponent */120ix0 = (ix0&0x000fffff)|0x00100000;121if(m&1){ /* odd m, double x to make it even */122ix0 += ix0 + ((ix1&sign)>>31);123ix1 += ix1;124}125m >>= 1; /* m = [m/2] */126127/* generate sqrt(x) bit by bit */128ix0 += ix0 + ((ix1&sign)>>31);129ix1 += ix1;130q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */131r = 0x00200000; /* r = moving bit from right to left */132133while(r!=0) {134t = s0+r;135if(t<=ix0) {136s0 = t+r;137ix0 -= t;138q += r;139}140ix0 += ix0 + ((ix1&sign)>>31);141ix1 += ix1;142r>>=1;143}144145r = sign;146while(r!=0) {147t1 = s1+r;148t = s0;149if((t<ix0)||((t==ix0)&&(t1<=ix1))) {150s1 = t1+r;151if(((t1&sign)==(u_int32_t)sign)&&(s1&sign)==0) s0 += 1;152ix0 -= t;153if (ix1 < t1) ix0 -= 1;154ix1 -= t1;155q1 += r;156}157ix0 += ix0 + ((ix1&sign)>>31);158ix1 += ix1;159r>>=1;160}161162/* use floating add to find out rounding direction */163if((ix0|ix1)!=0) {164z = one-tiny; /* trigger inexact flag */165if (z>=one) {166z = one+tiny;167if (q1==(u_int32_t)0xffffffff) { q1=0; q += 1;}168else if (z>one) {169if (q1==(u_int32_t)0xfffffffe) q+=1;170q1+=2;171} else172q1 += (q1&1);173}174}175ix0 = (q>>1)+0x3fe00000;176ix1 = q1>>1;177if ((q&1)==1) ix1 |= sign;178ix0 += (m <<20);179INSERT_WORDS(z,ix0,ix1);180return z;181}182183/*184* wrapper sqrt(x)185*/186#ifndef _IEEE_LIBM187double sqrt(double x)188{189double z = __ieee754_sqrt(x);190if (_LIB_VERSION == _IEEE_ || isnan(x))191return z;192if (x < 0.0)193return __kernel_standard(x, x, 26); /* sqrt(negative) */194return z;195}196#else197strong_alias(__ieee754_sqrt, sqrt)198#endif199libm_hidden_def(sqrt)200201202/*203Other methods (use floating-point arithmetic)204-------------205(This is a copy of a drafted paper by Prof W. Kahan206and K.C. Ng, written in May, 1986)207208Two algorithms are given here to implement sqrt(x)209(IEEE double precision arithmetic) in software.210Both supply sqrt(x) correctly rounded. The first algorithm (in211Section A) uses newton iterations and involves four divisions.212The second one uses reciproot iterations to avoid division, but213requires more multiplications. Both algorithms need the ability214to chop results of arithmetic operations instead of round them,215and the INEXACT flag to indicate when an arithmetic operation216is executed exactly with no roundoff error, all part of the217standard (IEEE 754-1985). The ability to perform shift, add,218subtract and logical AND operations upon 32-bit words is needed219too, though not part of the standard.220221A. sqrt(x) by Newton Iteration222223(1) Initial approximation224225Let x0 and x1 be the leading and the trailing 32-bit words of226a floating point number x (in IEEE double format) respectively2272281 11 52 ...widths229------------------------------------------------------230x: |s| e | f |231------------------------------------------------------232msb lsb msb lsb ...order233234235------------------------ ------------------------236x0: |s| e | f1 | x1: | f2 |237------------------------ ------------------------238239By performing shifts and subtracts on x0 and x1 (both regarded240as integers), we obtain an 8-bit approximation of sqrt(x) as241follows.242243k := (x0>>1) + 0x1ff80000;244y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits245Here k is a 32-bit integer and T1[] is an integer array containing246correction terms. Now magically the floating value of y (y's247leading 32-bit word is y0, the value of its trailing word is 0)248approximates sqrt(x) to almost 8-bit.249250Value of T1:251static int T1[32]= {2520, 1024, 3062, 5746, 9193, 13348, 18162, 23592,25329598, 36145, 43202, 50740, 58733, 67158, 75992, 85215,25483599, 71378, 60428, 50647, 41945, 34246, 27478, 21581,25516499, 12183, 8588, 5674, 3403, 1742, 661, 130,};256257(2) Iterative refinement258259Apply Heron's rule three times to y, we have y approximates260sqrt(x) to within 1 ulp (Unit in the Last Place):261262y := (y+x/y)/2 ... almost 17 sig. bits263y := (y+x/y)/2 ... almost 35 sig. bits264y := y-(y-x/y)/2 ... within 1 ulp265266267Remark 1.268Another way to improve y to within 1 ulp is:269270y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x)271y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x)2722732274(x-y )*y275y := y + 2* ---------- ...within 1 ulp27622773y + x278279280This formula has one division fewer than the one above; however,281it requires more multiplications and additions. Also x must be282scaled in advance to avoid spurious overflow in evaluating the283expression 3y*y+x. Hence it is not recommended uless division284is slow. If division is very slow, then one should use the285reciproot algorithm given in section B.286287(3) Final adjustment288289By twiddling y's last bit it is possible to force y to be290correctly rounded according to the prevailing rounding mode291as follows. Let r and i be copies of the rounding mode and292inexact flag before entering the square root program. Also we293use the expression y+-ulp for the next representable floating294numbers (up and down) of y. Note that y+-ulp = either fixed295point y+-1, or multiply y by nextafter(1,+-inf) in chopped296mode.297298I := FALSE; ... reset INEXACT flag I299R := RZ; ... set rounding mode to round-toward-zero300z := x/y; ... chopped quotient, possibly inexact301If(not I) then { ... if the quotient is exact302if(z=y) {303I := i; ... restore inexact flag304R := r; ... restore rounded mode305return sqrt(x):=y.306} else {307z := z - ulp; ... special rounding308}309}310i := TRUE; ... sqrt(x) is inexact311If (r=RN) then z=z+ulp ... rounded-to-nearest312If (r=RP) then { ... round-toward-+inf313y = y+ulp; z=z+ulp;314}315y := y+z; ... chopped sum316y0:=y0-0x00100000; ... y := y/2 is correctly rounded.317I := i; ... restore inexact flag318R := r; ... restore rounded mode319return sqrt(x):=y.320321(4) Special cases322323Square root of +inf, +-0, or NaN is itself;324Square root of a negative number is NaN with invalid signal.325326327B. sqrt(x) by Reciproot Iteration328329(1) Initial approximation330331Let x0 and x1 be the leading and the trailing 32-bit words of332a floating point number x (in IEEE double format) respectively333(see section A). By performing shifs and subtracts on x0 and y0,334we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.335336k := 0x5fe80000 - (x0>>1);337y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits338339Here k is a 32-bit integer and T2[] is an integer array340containing correction terms. Now magically the floating341value of y (y's leading 32-bit word is y0, the value of342its trailing word y1 is set to zero) approximates 1/sqrt(x)343to almost 7.8-bit.344345Value of T2:346static int T2[64]= {3470x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,3480xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,3490x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,3500x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,3510x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,3520x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,3530x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,3540x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};355356(2) Iterative refinement357358Apply Reciproot iteration three times to y and multiply the359result by x to get an approximation z that matches sqrt(x)360to about 1 ulp. To be exact, we will have361-1ulp < sqrt(x)-z<1.0625ulp.362363... set rounding mode to Round-to-nearest364y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x)365y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)366... special arrangement for better accuracy367z := x*y ... 29 bits to sqrt(x), with z*y<1368z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x)369370Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that371(a) the term z*y in the final iteration is always less than 1;372(b) the error in the final result is biased upward so that373-1 ulp < sqrt(x) - z < 1.0625 ulp374instead of |sqrt(x)-z|<1.03125ulp.375376(3) Final adjustment377378By twiddling y's last bit it is possible to force y to be379correctly rounded according to the prevailing rounding mode380as follows. Let r and i be copies of the rounding mode and381inexact flag before entering the square root program. Also we382use the expression y+-ulp for the next representable floating383numbers (up and down) of y. Note that y+-ulp = either fixed384point y+-1, or multiply y by nextafter(1,+-inf) in chopped385mode.386387R := RZ; ... set rounding mode to round-toward-zero388switch(r) {389case RN: ... round-to-nearest390if(x<= z*(z-ulp)...chopped) z = z - ulp; else391if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;392break;393case RZ:case RM: ... round-to-zero or round-to--inf394R:=RP; ... reset rounding mod to round-to-+inf395if(x<z*z ... rounded up) z = z - ulp; else396if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;397break;398case RP: ... round-to-+inf399if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else400if(x>z*z ...chopped) z = z+ulp;401break;402}403404Remark 3. The above comparisons can be done in fixed point. For405example, to compare x and w=z*z chopped, it suffices to compare406x1 and w1 (the trailing parts of x and w), regarding them as407two's complement integers.408409...Is z an exact square root?410To determine whether z is an exact square root of x, let z1 be the411trailing part of z, and also let x0 and x1 be the leading and412trailing parts of x.413414If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0415I := 1; ... Raise Inexact flag: z is not exact416else {417j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2418k := z1 >> 26; ... get z's 25-th and 26-th419fraction bits420I := i or (k&j) or ((k&(j+j+1))!=(x1&3));421}422R:= r ... restore rounded mode423return sqrt(x):=z.424425If multiplication is cheaper then the foregoing red tape, the426Inexact flag can be evaluated by427428I := i;429I := (z*z!=x) or I.430431Note that z*z can overwrite I; this value must be sensed if it is432True.433434Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be435zero.436437--------------------438z1: | f2 |439--------------------440bit 31 bit 0441442Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd443or even of logb(x) have the following relations:444445-------------------------------------------------446bit 27,26 of z1 bit 1,0 of x1 logb(x)447-------------------------------------------------44800 00 odd and even44901 01 even45010 10 odd45110 00 even45211 01 even453-------------------------------------------------454455(4) Special cases (see (4) of Section A).456457*/458459460