Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/sdl/libm/k_rem_pio2.c
9903 views
1
#include "SDL_internal.h"
2
/*
3
* ====================================================
4
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5
*
6
* Developed at SunPro, a Sun Microsystems, Inc. business.
7
* Permission to use, copy, modify, and distribute this
8
* software is freely granted, provided that this notice
9
* is preserved.
10
* ====================================================
11
*/
12
13
/*
14
* __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
15
* double x[],y[]; int e0,nx,prec; int ipio2[];
16
*
17
* __kernel_rem_pio2 return the last three digits of N with
18
* y = x - N*pi/2
19
* so that |y| < pi/2.
20
*
21
* The method is to compute the integer (mod 8) and fraction parts of
22
* (2/pi)*x without doing the full multiplication. In general we
23
* skip the part of the product that are known to be a huge integer (
24
* more accurately, = 0 mod 8 ). Thus the number of operations are
25
* independent of the exponent of the input.
26
*
27
* (2/pi) is represented by an array of 24-bit integers in ipio2[].
28
*
29
* Input parameters:
30
* x[] The input value (must be positive) is broken into nx
31
* pieces of 24-bit integers in double precision format.
32
* x[i] will be the i-th 24 bit of x. The scaled exponent
33
* of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
34
* match x's up to 24 bits.
35
*
36
* Example of breaking a double positive z into x[0]+x[1]+x[2]:
37
* e0 = ilogb(z)-23
38
* z = scalbn(z,-e0)
39
* for i = 0,1,2
40
* x[i] = floor(z)
41
* z = (z-x[i])*2**24
42
*
43
*
44
* y[] ouput result in an array of double precision numbers.
45
* The dimension of y[] is:
46
* 24-bit precision 1
47
* 53-bit precision 2
48
* 64-bit precision 2
49
* 113-bit precision 3
50
* The actual value is the sum of them. Thus for 113-bit
51
* precison, one may have to do something like:
52
*
53
* long double t,w,r_head, r_tail;
54
* t = (long double)y[2] + (long double)y[1];
55
* w = (long double)y[0];
56
* r_head = t+w;
57
* r_tail = w - (r_head - t);
58
*
59
* e0 The exponent of x[0]
60
*
61
* nx dimension of x[]
62
*
63
* prec an integer indicating the precision:
64
* 0 24 bits (single)
65
* 1 53 bits (double)
66
* 2 64 bits (extended)
67
* 3 113 bits (quad)
68
*
69
* ipio2[]
70
* integer array, contains the (24*i)-th to (24*i+23)-th
71
* bit of 2/pi after binary point. The corresponding
72
* floating value is
73
*
74
* ipio2[i] * 2^(-24(i+1)).
75
*
76
* External function:
77
* double scalbn(), floor();
78
*
79
*
80
* Here is the description of some local variables:
81
*
82
* jk jk+1 is the initial number of terms of ipio2[] needed
83
* in the computation. The recommended value is 2,3,4,
84
* 6 for single, double, extended,and quad.
85
*
86
* jz local integer variable indicating the number of
87
* terms of ipio2[] used.
88
*
89
* jx nx - 1
90
*
91
* jv index for pointing to the suitable ipio2[] for the
92
* computation. In general, we want
93
* ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
94
* is an integer. Thus
95
* e0-3-24*jv >= 0 or (e0-3)/24 >= jv
96
* Hence jv = max(0,(e0-3)/24).
97
*
98
* jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
99
*
100
* q[] double array with integral value, representing the
101
* 24-bits chunk of the product of x and 2/pi.
102
*
103
* q0 the corresponding exponent of q[0]. Note that the
104
* exponent for q[i] would be q0-24*i.
105
*
106
* PIo2[] double precision array, obtained by cutting pi/2
107
* into 24 bits chunks.
108
*
109
* f[] ipio2[] in floating point
110
*
111
* iq[] integer array by breaking up q[] in 24-bits chunk.
112
*
113
* fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
114
*
115
* ih integer. If >0 it indicates q[] is >= 0.5, hence
116
* it also indicates the *sign* of the result.
117
*
118
*/
119
120
121
/*
122
* Constants:
123
* The hexadecimal values are the intended ones for the following
124
* constants. The decimal values may be used, provided that the
125
* compiler will convert from decimal to binary accurately enough
126
* to produce the hexadecimal values shown.
127
*/
128
129
#include "math_libm.h"
130
#include "math_private.h"
131
132
133
static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
134
135
static const double PIo2[] = {
136
1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
137
7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
138
5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
139
3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
140
1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
141
1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
142
2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
143
2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
144
};
145
146
static const double
147
zero = 0.0,
148
one = 1.0,
149
two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
150
twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
151
152
int32_t attribute_hidden __kernel_rem_pio2(const double *x, double *y, int e0, int nx, const unsigned int prec, const int32_t *ipio2)
153
{
154
int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
155
double z,fw,f[20],fq[20],q[20];
156
157
if (nx < 1) {
158
return 0;
159
}
160
161
/* initialize jk*/
162
SDL_assert(prec < SDL_arraysize(init_jk));
163
jk = init_jk[prec];
164
SDL_assert(jk > 0);
165
jp = jk;
166
167
/* determine jx,jv,q0, note that 3>q0 */
168
jx = nx-1;
169
jv = (e0-3)/24; if(jv<0) jv=0;
170
q0 = e0-24*(jv+1);
171
172
/* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
173
j = jv-jx; m = jx+jk;
174
for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
175
if ((m+1) < SDL_arraysize(f)) {
176
SDL_memset(&f[m+1], 0, sizeof (f) - ((m+1) * sizeof (f[0])));
177
}
178
179
/* compute q[0],q[1],...q[jk] */
180
for (i=0;i<=jk;i++) {
181
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
182
q[i] = fw;
183
}
184
185
jz = jk;
186
recompute:
187
/* distill q[] into iq[] reversingly */
188
for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
189
fw = (double)((int32_t)(twon24* z));
190
iq[i] = (int32_t)(z-two24*fw);
191
z = q[j-1]+fw;
192
}
193
if (jz < SDL_arraysize(iq)) {
194
SDL_memset(&iq[jz], 0, sizeof (iq) - (jz * sizeof (iq[0])));
195
}
196
197
/* compute n */
198
z = scalbn(z,q0); /* actual value of z */
199
z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */
200
n = (int32_t) z;
201
z -= (double)n;
202
ih = 0;
203
if(q0>0) { /* need iq[jz-1] to determine n */
204
i = (iq[jz-1]>>(24-q0)); n += i;
205
iq[jz-1] -= i<<(24-q0);
206
ih = iq[jz-1]>>(23-q0);
207
}
208
else if(q0==0) ih = iq[jz-1]>>23;
209
else if(z>=0.5) ih=2;
210
211
if(ih>0) { /* q > 0.5 */
212
n += 1; carry = 0;
213
for(i=0;i<jz ;i++) { /* compute 1-q */
214
j = iq[i];
215
if(carry==0) {
216
if(j!=0) {
217
carry = 1; iq[i] = 0x1000000- j;
218
}
219
} else iq[i] = 0xffffff - j;
220
}
221
if(q0>0) { /* rare case: chance is 1 in 12 */
222
switch(q0) {
223
case 1:
224
iq[jz-1] &= 0x7fffff; break;
225
case 2:
226
iq[jz-1] &= 0x3fffff; break;
227
}
228
}
229
if(ih==2) {
230
z = one - z;
231
if(carry!=0) z -= scalbn(one,q0);
232
}
233
}
234
235
/* check if recomputation is needed */
236
if(z==zero) {
237
j = 0;
238
for (i=jz-1;i>=jk;i--) j |= iq[i];
239
if(j==0) { /* need recomputation */
240
for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */
241
242
for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */
243
f[jx+i] = (double) ipio2[jv+i];
244
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
245
q[i] = fw;
246
}
247
jz += k;
248
goto recompute;
249
}
250
}
251
252
/* chop off zero terms */
253
if(z==0.0) {
254
jz -= 1; q0 -= 24;
255
SDL_assert(jz >= 0);
256
while(iq[jz]==0) { jz--; SDL_assert(jz >= 0); q0-=24;}
257
} else { /* break z into 24-bit if necessary */
258
z = scalbn(z,-q0);
259
if(z>=two24) {
260
fw = (double)((int32_t)(twon24*z));
261
iq[jz] = (int32_t)(z-two24*fw);
262
jz += 1; q0 += 24;
263
iq[jz] = (int32_t) fw;
264
} else iq[jz] = (int32_t) z ;
265
}
266
267
/* convert integer "bit" chunk to floating-point value */
268
fw = scalbn(one,q0);
269
for(i=jz;i>=0;i--) {
270
q[i] = fw*(double)iq[i]; fw*=twon24;
271
}
272
273
/* compute PIo2[0,...,jp]*q[jz,...,0] */
274
SDL_zero(fq);
275
for(i=jz;i>=0;i--) {
276
for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
277
fq[jz-i] = fw;
278
}
279
280
/* compress fq[] into y[] */
281
switch(prec) {
282
case 0:
283
fw = 0.0;
284
for (i=jz;i>=0;i--) fw += fq[i];
285
y[0] = (ih==0)? fw: -fw;
286
break;
287
case 1:
288
case 2:
289
fw = 0.0;
290
for (i=jz;i>=0;i--) fw += fq[i];
291
y[0] = (ih==0)? fw: -fw;
292
fw = fq[0]-fw;
293
for (i=1;i<=jz;i++) fw += fq[i];
294
y[1] = (ih==0)? fw: -fw;
295
break;
296
case 3: /* painful */
297
for (i=jz;i>0;i--) {
298
fw = fq[i-1]+fq[i];
299
fq[i] += fq[i-1]-fw;
300
fq[i-1] = fw;
301
}
302
for (i=jz;i>1;i--) {
303
fw = fq[i-1]+fq[i];
304
fq[i] += fq[i-1]-fw;
305
fq[i-1] = fw;
306
}
307
for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
308
if(ih==0) {
309
y[0] = fq[0]; y[1] = fq[1]; y[2] = fw;
310
} else {
311
y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
312
}
313
}
314
return n&7;
315
}
316
317