#include "SDL_internal.h"1/*2* ====================================================3* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.4*5* Developed at SunPro, a Sun Microsystems, Inc. business.6* Permission to use, copy, modify, and distribute this7* software is freely granted, provided that this notice8* is preserved.9* ====================================================10*/1112/*13* __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)14* double x[],y[]; int e0,nx,prec; int ipio2[];15*16* __kernel_rem_pio2 return the last three digits of N with17* y = x - N*pi/218* so that |y| < pi/2.19*20* The method is to compute the integer (mod 8) and fraction parts of21* (2/pi)*x without doing the full multiplication. In general we22* skip the part of the product that are known to be a huge integer (23* more accurately, = 0 mod 8 ). Thus the number of operations are24* independent of the exponent of the input.25*26* (2/pi) is represented by an array of 24-bit integers in ipio2[].27*28* Input parameters:29* x[] The input value (must be positive) is broken into nx30* pieces of 24-bit integers in double precision format.31* x[i] will be the i-th 24 bit of x. The scaled exponent32* of x[0] is given in input parameter e0 (i.e., x[0]*2^e033* match x's up to 24 bits.34*35* Example of breaking a double positive z into x[0]+x[1]+x[2]:36* e0 = ilogb(z)-2337* z = scalbn(z,-e0)38* for i = 0,1,239* x[i] = floor(z)40* z = (z-x[i])*2**2441*42*43* y[] ouput result in an array of double precision numbers.44* The dimension of y[] is:45* 24-bit precision 146* 53-bit precision 247* 64-bit precision 248* 113-bit precision 349* The actual value is the sum of them. Thus for 113-bit50* precison, one may have to do something like:51*52* long double t,w,r_head, r_tail;53* t = (long double)y[2] + (long double)y[1];54* w = (long double)y[0];55* r_head = t+w;56* r_tail = w - (r_head - t);57*58* e0 The exponent of x[0]59*60* nx dimension of x[]61*62* prec an integer indicating the precision:63* 0 24 bits (single)64* 1 53 bits (double)65* 2 64 bits (extended)66* 3 113 bits (quad)67*68* ipio2[]69* integer array, contains the (24*i)-th to (24*i+23)-th70* bit of 2/pi after binary point. The corresponding71* floating value is72*73* ipio2[i] * 2^(-24(i+1)).74*75* External function:76* double scalbn(), floor();77*78*79* Here is the description of some local variables:80*81* jk jk+1 is the initial number of terms of ipio2[] needed82* in the computation. The recommended value is 2,3,4,83* 6 for single, double, extended,and quad.84*85* jz local integer variable indicating the number of86* terms of ipio2[] used.87*88* jx nx - 189*90* jv index for pointing to the suitable ipio2[] for the91* computation. In general, we want92* ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/893* is an integer. Thus94* e0-3-24*jv >= 0 or (e0-3)/24 >= jv95* Hence jv = max(0,(e0-3)/24).96*97* jp jp+1 is the number of terms in PIo2[] needed, jp = jk.98*99* q[] double array with integral value, representing the100* 24-bits chunk of the product of x and 2/pi.101*102* q0 the corresponding exponent of q[0]. Note that the103* exponent for q[i] would be q0-24*i.104*105* PIo2[] double precision array, obtained by cutting pi/2106* into 24 bits chunks.107*108* f[] ipio2[] in floating point109*110* iq[] integer array by breaking up q[] in 24-bits chunk.111*112* fq[] final product of x*(2/pi) in fq[0],..,fq[jk]113*114* ih integer. If >0 it indicates q[] is >= 0.5, hence115* it also indicates the *sign* of the result.116*117*/118119120/*121* Constants:122* The hexadecimal values are the intended ones for the following123* constants. The decimal values may be used, provided that the124* compiler will convert from decimal to binary accurately enough125* to produce the hexadecimal values shown.126*/127128#include "math_libm.h"129#include "math_private.h"130131132static const int init_jk[] = {2,3,4,6}; /* initial value for jk */133134static const double PIo2[] = {1351.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */1367.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */1375.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */1383.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */1391.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */1401.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */1412.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */1422.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */143};144145static const double146zero = 0.0,147one = 1.0,148two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */149twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */150151int32_t attribute_hidden __kernel_rem_pio2(const double *x, double *y, int e0, int nx, const unsigned int prec, const int32_t *ipio2)152{153int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;154double z,fw,f[20],fq[20],q[20];155156if (nx < 1) {157return 0;158}159160/* initialize jk*/161SDL_assert(prec < SDL_arraysize(init_jk));162jk = init_jk[prec];163SDL_assert(jk > 0);164jp = jk;165166/* determine jx,jv,q0, note that 3>q0 */167jx = nx-1;168jv = (e0-3)/24; if(jv<0) jv=0;169q0 = e0-24*(jv+1);170171/* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */172j = jv-jx; m = jx+jk;173for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];174if ((m+1) < SDL_arraysize(f)) {175SDL_memset(&f[m+1], 0, sizeof (f) - ((m+1) * sizeof (f[0])));176}177178/* compute q[0],q[1],...q[jk] */179for (i=0;i<=jk;i++) {180for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];181q[i] = fw;182}183184jz = jk;185recompute:186/* distill q[] into iq[] reversingly */187for(i=0,j=jz,z=q[jz];j>0;i++,j--) {188fw = (double)((int32_t)(twon24* z));189iq[i] = (int32_t)(z-two24*fw);190z = q[j-1]+fw;191}192if (jz < SDL_arraysize(iq)) {193SDL_memset(&iq[jz], 0, sizeof (iq) - (jz * sizeof (iq[0])));194}195196/* compute n */197z = scalbn(z,q0); /* actual value of z */198z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */199n = (int32_t) z;200z -= (double)n;201ih = 0;202if(q0>0) { /* need iq[jz-1] to determine n */203i = (iq[jz-1]>>(24-q0)); n += i;204iq[jz-1] -= i<<(24-q0);205ih = iq[jz-1]>>(23-q0);206}207else if(q0==0) ih = iq[jz-1]>>23;208else if(z>=0.5) ih=2;209210if(ih>0) { /* q > 0.5 */211n += 1; carry = 0;212for(i=0;i<jz ;i++) { /* compute 1-q */213j = iq[i];214if(carry==0) {215if(j!=0) {216carry = 1; iq[i] = 0x1000000- j;217}218} else iq[i] = 0xffffff - j;219}220if(q0>0) { /* rare case: chance is 1 in 12 */221switch(q0) {222case 1:223iq[jz-1] &= 0x7fffff; break;224case 2:225iq[jz-1] &= 0x3fffff; break;226}227}228if(ih==2) {229z = one - z;230if(carry!=0) z -= scalbn(one,q0);231}232}233234/* check if recomputation is needed */235if(z==zero) {236j = 0;237for (i=jz-1;i>=jk;i--) j |= iq[i];238if(j==0) { /* need recomputation */239for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */240241for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */242f[jx+i] = (double) ipio2[jv+i];243for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];244q[i] = fw;245}246jz += k;247goto recompute;248}249}250251/* chop off zero terms */252if(z==0.0) {253jz -= 1; q0 -= 24;254SDL_assert(jz >= 0);255while(iq[jz]==0) { jz--; SDL_assert(jz >= 0); q0-=24;}256} else { /* break z into 24-bit if necessary */257z = scalbn(z,-q0);258if(z>=two24) {259fw = (double)((int32_t)(twon24*z));260iq[jz] = (int32_t)(z-two24*fw);261jz += 1; q0 += 24;262iq[jz] = (int32_t) fw;263} else iq[jz] = (int32_t) z ;264}265266/* convert integer "bit" chunk to floating-point value */267fw = scalbn(one,q0);268for(i=jz;i>=0;i--) {269q[i] = fw*(double)iq[i]; fw*=twon24;270}271272/* compute PIo2[0,...,jp]*q[jz,...,0] */273SDL_zero(fq);274for(i=jz;i>=0;i--) {275for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];276fq[jz-i] = fw;277}278279/* compress fq[] into y[] */280switch(prec) {281case 0:282fw = 0.0;283for (i=jz;i>=0;i--) fw += fq[i];284y[0] = (ih==0)? fw: -fw;285break;286case 1:287case 2:288fw = 0.0;289for (i=jz;i>=0;i--) fw += fq[i];290y[0] = (ih==0)? fw: -fw;291fw = fq[0]-fw;292for (i=1;i<=jz;i++) fw += fq[i];293y[1] = (ih==0)? fw: -fw;294break;295case 3: /* painful */296for (i=jz;i>0;i--) {297fw = fq[i-1]+fq[i];298fq[i] += fq[i-1]-fw;299fq[i-1] = fw;300}301for (i=jz;i>1;i--) {302fw = fq[i-1]+fq[i];303fq[i] += fq[i-1]-fw;304fq[i-1] = fw;305}306for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];307if(ih==0) {308y[0] = fq[0]; y[1] = fq[1]; y[2] = fw;309} else {310y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;311}312}313return n&7;314}315316317