#include "SDL_internal.h"1/*2* ====================================================3* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.4*5* Developed at SunPro, a Sun Microsystems, Inc. business.6* Permission to use, copy, modify, and distribute this7* software is freely granted, provided that this notice8* is preserved.9* ====================================================10*/1112/* __kernel_tan( x, y, k )13* kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.785414* Input x is assumed to be bounded by ~pi/4 in magnitude.15* Input y is the tail of x.16* Input k indicates whether tan (if k=1) or17* -1/tan (if k= -1) is returned.18*19* Algorithm20* 1. Since tan(-x) = -tan(x), we need only to consider positive x.21* 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.22* 3. tan(x) is approximated by a odd polynomial of degree 27 on23* [0,0.67434]24* 3 2725* tan(x) ~ x + T1*x + ... + T13*x26* where27*28* |tan(x) 2 4 26 | -59.229* |----- - (1+T1*x +T2*x +.... +T13*x )| <= 230* | x |31*32* Note: tan(x+y) = tan(x) + tan'(x)*y33* ~ tan(x) + (1+x*x)*y34* Therefore, for better accuracy in computing tan(x+y), let35* 3 2 2 2 236* r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))37* then38* 3 239* tan(x+y) = x + (T1*x + (x *(r+y)+y))40*41* 4. For x in [0.67434,pi/4], let y = pi/4 - x, then42* tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))43* = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))44*/4546#include "math_libm.h"47#include "math_private.h"4849static const double50one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */51pio4 = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */52pio4lo= 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */53T[] = {543.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */551.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */565.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */572.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */588.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */593.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */601.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */615.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */622.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */637.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */647.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */65-1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */662.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */67};6869double attribute_hidden __kernel_tan(double x, double y, int iy)70{71double z,r,v,w,s;72int32_t ix,hx;73GET_HIGH_WORD(hx,x);74ix = hx&0x7fffffff; /* high word of |x| */75if(ix<0x3e300000) /* x < 2**-28 */76{if((int)x==0) { /* generate inexact */77u_int32_t low;78GET_LOW_WORD(low,x);79if(((ix|low)|(iy+1))==0) return one/fabs(x);80else return (iy==1)? x: -one/x;81}82}83if(ix>=0x3FE59428) { /* |x|>=0.6744 */84if(hx<0) {x = -x; y = -y;}85z = pio4-x;86w = pio4lo-y;87x = z+w; y = 0.0;88}89z = x*x;90w = z*z;91/* Break x^5*(T[1]+x^2*T[2]+...) into92* x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +93* x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))94*/95r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11]))));96v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12])))));97s = z*x;98r = y + z*(s*(r+v)+y);99r += T[0]*s;100w = x+r;101if(ix>=0x3FE59428) {102v = (double)iy;103return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r)));104}105if(iy==1) return w;106else { /* if allow error up to 2 ulp,107simply return -1.0/(x+r) here */108/* compute -1.0/(x+r) accurately */109double a,t;110z = w;111SET_LOW_WORD(z,0);112v = r-(z - x); /* z+v = r+x */113t = a = -1.0/w; /* a = -1.0/w */114SET_LOW_WORD(t,0);115s = 1.0+t*z;116return t+a*(s+t*v);117}118}119120121