Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/sdl/libm/s_sin.c
9903 views
1
#include "SDL_internal.h"
2
/*
3
* ====================================================
4
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5
*
6
* Developed at SunPro, a Sun Microsystems, Inc. business.
7
* Permission to use, copy, modify, and distribute this
8
* software is freely granted, provided that this notice
9
* is preserved.
10
* ====================================================
11
*/
12
13
/* sin(x)
14
* Return sine function of x.
15
*
16
* kernel function:
17
* __kernel_sin ... sine function on [-pi/4,pi/4]
18
* __kernel_cos ... cose function on [-pi/4,pi/4]
19
* __ieee754_rem_pio2 ... argument reduction routine
20
*
21
* Method.
22
* Let S,C and T denote the sin, cos and tan respectively on
23
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
24
* in [-pi/4 , +pi/4], and let n = k mod 4.
25
* We have
26
*
27
* n sin(x) cos(x) tan(x)
28
* ----------------------------------------------------------
29
* 0 S C T
30
* 1 C -S -1/T
31
* 2 -S -C T
32
* 3 -C S -1/T
33
* ----------------------------------------------------------
34
*
35
* Special cases:
36
* Let trig be any of sin, cos, or tan.
37
* trig(+-INF) is NaN, with signals;
38
* trig(NaN) is that NaN;
39
*
40
* Accuracy:
41
* TRIG(x) returns trig(x) nearly rounded
42
*/
43
44
#include "math_libm.h"
45
#include "math_private.h"
46
47
double sin(double x)
48
{
49
double y[2],z=0.0;
50
int32_t n, ix;
51
52
/* High word of x. */
53
GET_HIGH_WORD(ix,x);
54
55
/* |x| ~< pi/4 */
56
ix &= 0x7fffffff;
57
if(ix <= 0x3fe921fb) return __kernel_sin(x,z,0);
58
59
/* sin(Inf or NaN) is NaN */
60
else if (ix>=0x7ff00000) return x-x;
61
62
/* argument reduction needed */
63
else {
64
n = __ieee754_rem_pio2(x,y);
65
switch(n&3) {
66
case 0: return __kernel_sin(y[0],y[1],1);
67
case 1: return __kernel_cos(y[0],y[1]);
68
case 2: return -__kernel_sin(y[0],y[1],1);
69
default:
70
return -__kernel_cos(y[0],y[1]);
71
}
72
}
73
}
74
libm_hidden_def(sin)
75
76