Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/sdl/stdlib/SDL_malloc.c
9903 views
1
/*
2
Simple DirectMedia Layer
3
Copyright (C) 1997-2025 Sam Lantinga <[email protected]>
4
5
This software is provided 'as-is', without any express or implied
6
warranty. In no event will the authors be held liable for any damages
7
arising from the use of this software.
8
9
Permission is granted to anyone to use this software for any purpose,
10
including commercial applications, and to alter it and redistribute it
11
freely, subject to the following restrictions:
12
13
1. The origin of this software must not be misrepresented; you must not
14
claim that you wrote the original software. If you use this software
15
in a product, an acknowledgment in the product documentation would be
16
appreciated but is not required.
17
2. Altered source versions must be plainly marked as such, and must not be
18
misrepresented as being the original software.
19
3. This notice may not be removed or altered from any source distribution.
20
*/
21
#include "SDL_internal.h"
22
23
/* This file contains portable memory management functions for SDL */
24
25
#ifndef HAVE_MALLOC
26
#define LACKS_SYS_TYPES_H
27
#define LACKS_STDIO_H
28
#define LACKS_STRINGS_H
29
#define LACKS_STRING_H
30
#define LACKS_STDLIB_H
31
#define ABORT
32
#define NO_MALLOC_STATS 1
33
#define USE_LOCKS 1
34
#define USE_DL_PREFIX
35
36
/*
37
This is a version (aka dlmalloc) of malloc/free/realloc written by
38
Doug Lea and released to the public domain, as explained at
39
http://creativecommons.org/publicdomain/zero/1.0/ Send questions,
40
comments, complaints, performance data, etc to [email protected]
41
42
* Version 2.8.6 Wed Aug 29 06:57:58 2012 Doug Lea
43
Note: There may be an updated version of this malloc obtainable at
44
ftp://gee.cs.oswego.edu/pub/misc/malloc.c
45
Check before installing!
46
47
* Quickstart
48
49
This library is all in one file to simplify the most common usage:
50
ftp it, compile it (-O3), and link it into another program. All of
51
the compile-time options default to reasonable values for use on
52
most platforms. You might later want to step through various
53
compile-time and dynamic tuning options.
54
55
For convenience, an include file for code using this malloc is at:
56
ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.6.h
57
You don't really need this .h file unless you call functions not
58
defined in your system include files. The .h file contains only the
59
excerpts from this file needed for using this malloc on ANSI C/C++
60
systems, so long as you haven't changed compile-time options about
61
naming and tuning parameters. If you do, then you can create your
62
own malloc.h that does include all settings by cutting at the point
63
indicated below. Note that you may already by default be using a C
64
library containing a malloc that is based on some version of this
65
malloc (for example in linux). You might still want to use the one
66
in this file to customize settings or to avoid overheads associated
67
with library versions.
68
69
* Vital statistics:
70
71
Supported pointer/size_t representation: 4 or 8 bytes
72
size_t MUST be an unsigned type of the same width as
73
pointers. (If you are using an ancient system that declares
74
size_t as a signed type, or need it to be a different width
75
than pointers, you can use a previous release of this malloc
76
(e.g. 2.7.2) supporting these.)
77
78
Alignment: 8 bytes (minimum)
79
This suffices for nearly all current machines and C compilers.
80
However, you can define MALLOC_ALIGNMENT to be wider than this
81
if necessary (up to 128bytes), at the expense of using more space.
82
83
Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes)
84
8 or 16 bytes (if 8byte sizes)
85
Each malloced chunk has a hidden word of overhead holding size
86
and status information, and additional cross-check word
87
if FOOTERS is defined.
88
89
Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead)
90
8-byte ptrs: 32 bytes (including overhead)
91
92
Even a request for zero bytes (i.e., malloc(0)) returns a
93
pointer to something of the minimum allocatable size.
94
The maximum overhead wastage (i.e., number of extra bytes
95
allocated than were requested in malloc) is less than or equal
96
to the minimum size, except for requests >= mmap_threshold that
97
are serviced via mmap(), where the worst case wastage is about
98
32 bytes plus the remainder from a system page (the minimal
99
mmap unit); typically 4096 or 8192 bytes.
100
101
Security: static-safe; optionally more or less
102
The "security" of malloc refers to the ability of malicious
103
code to accentuate the effects of errors (for example, freeing
104
space that is not currently malloc'ed or overwriting past the
105
ends of chunks) in code that calls malloc. This malloc
106
guarantees not to modify any memory locations below the base of
107
heap, i.e., static variables, even in the presence of usage
108
errors. The routines additionally detect most improper frees
109
and reallocs. All this holds as long as the static bookkeeping
110
for malloc itself is not corrupted by some other means. This
111
is only one aspect of security -- these checks do not, and
112
cannot, detect all possible programming errors.
113
114
If FOOTERS is defined nonzero, then each allocated chunk
115
carries an additional check word to verify that it was malloced
116
from its space. These check words are the same within each
117
execution of a program using malloc, but differ across
118
executions, so externally crafted fake chunks cannot be
119
freed. This improves security by rejecting frees/reallocs that
120
could corrupt heap memory, in addition to the checks preventing
121
writes to statics that are always on. This may further improve
122
security at the expense of time and space overhead. (Note that
123
FOOTERS may also be worth using with MSPACES.)
124
125
By default detected errors cause the program to abort (calling
126
"abort()"). You can override this to instead proceed past
127
errors by defining PROCEED_ON_ERROR. In this case, a bad free
128
has no effect, and a malloc that encounters a bad address
129
caused by user overwrites will ignore the bad address by
130
dropping pointers and indices to all known memory. This may
131
be appropriate for programs that should continue if at all
132
possible in the face of programming errors, although they may
133
run out of memory because dropped memory is never reclaimed.
134
135
If you don't like either of these options, you can define
136
CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything
137
else. And if if you are sure that your program using malloc has
138
no errors or vulnerabilities, you can define INSECURE to 1,
139
which might (or might not) provide a small performance improvement.
140
141
It is also possible to limit the maximum total allocatable
142
space, using malloc_set_footprint_limit. This is not
143
designed as a security feature in itself (calls to set limits
144
are not screened or privileged), but may be useful as one
145
aspect of a secure implementation.
146
147
Thread-safety: NOT thread-safe unless USE_LOCKS defined non-zero
148
When USE_LOCKS is defined, each public call to malloc, free,
149
etc is surrounded with a lock. By default, this uses a plain
150
pthread mutex, win32 critical section, or a spin-lock if if
151
available for the platform and not disabled by setting
152
USE_SPIN_LOCKS=0. However, if USE_RECURSIVE_LOCKS is defined,
153
recursive versions are used instead (which are not required for
154
base functionality but may be needed in layered extensions).
155
Using a global lock is not especially fast, and can be a major
156
bottleneck. It is designed only to provide minimal protection
157
in concurrent environments, and to provide a basis for
158
extensions. If you are using malloc in a concurrent program,
159
consider instead using nedmalloc
160
(http://www.nedprod.com/programs/portable/nedmalloc/) or
161
ptmalloc (See http://www.malloc.de), which are derived from
162
versions of this malloc.
163
164
System requirements: Any combination of MORECORE and/or MMAP/MUNMAP
165
This malloc can use unix sbrk or any emulation (invoked using
166
the CALL_MORECORE macro) and/or mmap/munmap or any emulation
167
(invoked using CALL_MMAP/CALL_MUNMAP) to get and release system
168
memory. On most unix systems, it tends to work best if both
169
MORECORE and MMAP are enabled. On Win32, it uses emulations
170
based on VirtualAlloc. It also uses common C library functions
171
like memset.
172
173
Compliance: I believe it is compliant with the Single Unix Specification
174
(See http://www.unix.org). Also SVID/XPG, ANSI C, and probably
175
others as well.
176
177
* Overview of algorithms
178
179
This is not the fastest, most space-conserving, most portable, or
180
most tunable malloc ever written. However it is among the fastest
181
while also being among the most space-conserving, portable and
182
tunable. Consistent balance across these factors results in a good
183
general-purpose allocator for malloc-intensive programs.
184
185
In most ways, this malloc is a best-fit allocator. Generally, it
186
chooses the best-fitting existing chunk for a request, with ties
187
broken in approximately least-recently-used order. (This strategy
188
normally maintains low fragmentation.) However, for requests less
189
than 256bytes, it deviates from best-fit when there is not an
190
exactly fitting available chunk by preferring to use space adjacent
191
to that used for the previous small request, as well as by breaking
192
ties in approximately most-recently-used order. (These enhance
193
locality of series of small allocations.) And for very large requests
194
(>= 256Kb by default), it relies on system memory mapping
195
facilities, if supported. (This helps avoid carrying around and
196
possibly fragmenting memory used only for large chunks.)
197
198
All operations (except malloc_stats and mallinfo) have execution
199
times that are bounded by a constant factor of the number of bits in
200
a size_t, not counting any clearing in calloc or copying in realloc,
201
or actions surrounding MORECORE and MMAP that have times
202
proportional to the number of non-contiguous regions returned by
203
system allocation routines, which is often just 1. In real-time
204
applications, you can optionally suppress segment traversals using
205
NO_SEGMENT_TRAVERSAL, which assures bounded execution even when
206
system allocators return non-contiguous spaces, at the typical
207
expense of carrying around more memory and increased fragmentation.
208
209
The implementation is not very modular and seriously overuses
210
macros. Perhaps someday all C compilers will do as good a job
211
inlining modular code as can now be done by brute-force expansion,
212
but now, enough of them seem not to.
213
214
Some compilers issue a lot of warnings about code that is
215
dead/unreachable only on some platforms, and also about intentional
216
uses of negation on unsigned types. All known cases of each can be
217
ignored.
218
219
For a longer but out of date high-level description, see
220
http://gee.cs.oswego.edu/dl/html/malloc.html
221
222
* MSPACES
223
If MSPACES is defined, then in addition to malloc, free, etc.,
224
this file also defines mspace_malloc, mspace_free, etc. These
225
are versions of malloc routines that take an "mspace" argument
226
obtained using create_mspace, to control all internal bookkeeping.
227
If ONLY_MSPACES is defined, only these versions are compiled.
228
So if you would like to use this allocator for only some allocations,
229
and your system malloc for others, you can compile with
230
ONLY_MSPACES and then do something like...
231
static mspace mymspace = create_mspace(0,0); // for example
232
#define mymalloc(bytes) mspace_malloc(mymspace, bytes)
233
234
(Note: If you only need one instance of an mspace, you can instead
235
use "USE_DL_PREFIX" to relabel the global malloc.)
236
237
You can similarly create thread-local allocators by storing
238
mspaces as thread-locals. For example:
239
static __thread mspace tlms = 0;
240
void* tlmalloc(size_t bytes) {
241
if (tlms == 0) tlms = create_mspace(0, 0);
242
return mspace_malloc(tlms, bytes);
243
}
244
void tlfree(void* mem) { mspace_free(tlms, mem); }
245
246
Unless FOOTERS is defined, each mspace is completely independent.
247
You cannot allocate from one and free to another (although
248
conformance is only weakly checked, so usage errors are not always
249
caught). If FOOTERS is defined, then each chunk carries around a tag
250
indicating its originating mspace, and frees are directed to their
251
originating spaces. Normally, this requires use of locks.
252
253
------------------------- Compile-time options ---------------------------
254
255
Be careful in setting #define values for numerical constants of type
256
size_t. On some systems, literal values are not automatically extended
257
to size_t precision unless they are explicitly casted. You can also
258
use the symbolic values MAX_SIZE_T, SIZE_T_ONE, etc below.
259
260
WIN32 default: defined if _WIN32 defined
261
Defining WIN32 sets up defaults for MS environment and compilers.
262
Otherwise defaults are for unix. Beware that there seem to be some
263
cases where this malloc might not be a pure drop-in replacement for
264
Win32 malloc: Random-looking failures from Win32 GDI API's (eg;
265
SetDIBits()) may be due to bugs in some video driver implementations
266
when pixel buffers are malloc()ed, and the region spans more than
267
one VirtualAlloc()ed region. Because dlmalloc uses a small (64Kb)
268
default granularity, pixel buffers may straddle virtual allocation
269
regions more often than when using the Microsoft allocator. You can
270
avoid this by using VirtualAlloc() and VirtualFree() for all pixel
271
buffers rather than using malloc(). If this is not possible,
272
recompile this malloc with a larger DEFAULT_GRANULARITY. Note:
273
in cases where MSC and gcc (cygwin) are known to differ on WIN32,
274
conditions use _MSC_VER to distinguish them.
275
276
DLMALLOC_EXPORT default: extern
277
Defines how public APIs are declared. If you want to export via a
278
Windows DLL, you might define this as
279
#define DLMALLOC_EXPORT extern __declspec(dllexport)
280
If you want a POSIX ELF shared object, you might use
281
#define DLMALLOC_EXPORT extern __attribute__((visibility("default")))
282
283
MALLOC_ALIGNMENT default: (size_t)(2 * sizeof(void *))
284
Controls the minimum alignment for malloc'ed chunks. It must be a
285
power of two and at least 8, even on machines for which smaller
286
alignments would suffice. It may be defined as larger than this
287
though. Note however that code and data structures are optimized for
288
the case of 8-byte alignment.
289
290
MSPACES default: 0 (false)
291
If true, compile in support for independent allocation spaces.
292
This is only supported if HAVE_MMAP is true.
293
294
ONLY_MSPACES default: 0 (false)
295
If true, only compile in mspace versions, not regular versions.
296
297
USE_LOCKS default: 0 (false)
298
Causes each call to each public routine to be surrounded with
299
pthread or WIN32 mutex lock/unlock. (If set true, this can be
300
overridden on a per-mspace basis for mspace versions.) If set to a
301
non-zero value other than 1, locks are used, but their
302
implementation is left out, so lock functions must be supplied manually,
303
as described below.
304
305
USE_SPIN_LOCKS default: 1 iff USE_LOCKS and spin locks available
306
If true, uses custom spin locks for locking. This is currently
307
supported only gcc >= 4.1, older gccs on x86 platforms, and recent
308
MS compilers. Otherwise, posix locks or win32 critical sections are
309
used.
310
311
USE_RECURSIVE_LOCKS default: not defined
312
If defined nonzero, uses recursive (aka reentrant) locks, otherwise
313
uses plain mutexes. This is not required for malloc proper, but may
314
be needed for layered allocators such as nedmalloc.
315
316
LOCK_AT_FORK default: not defined
317
If defined nonzero, performs pthread_atfork upon initialization
318
to initialize child lock while holding parent lock. The implementation
319
assumes that pthread locks (not custom locks) are being used. In other
320
cases, you may need to customize the implementation.
321
322
FOOTERS default: 0
323
If true, provide extra checking and dispatching by placing
324
information in the footers of allocated chunks. This adds
325
space and time overhead.
326
327
INSECURE default: 0
328
If true, omit checks for usage errors and heap space overwrites.
329
330
USE_DL_PREFIX default: NOT defined
331
Causes compiler to prefix all public routines with the string 'dl'.
332
This can be useful when you only want to use this malloc in one part
333
of a program, using your regular system malloc elsewhere.
334
335
MALLOC_INSPECT_ALL default: NOT defined
336
If defined, compiles malloc_inspect_all and mspace_inspect_all, that
337
perform traversal of all heap space. Unless access to these
338
functions is otherwise restricted, you probably do not want to
339
include them in secure implementations.
340
341
ABORT default: defined as abort()
342
Defines how to abort on failed checks. On most systems, a failed
343
check cannot die with an "assert" or even print an informative
344
message, because the underlying print routines in turn call malloc,
345
which will fail again. Generally, the best policy is to simply call
346
abort(). It's not very useful to do more than this because many
347
errors due to overwriting will show up as address faults (null, odd
348
addresses etc) rather than malloc-triggered checks, so will also
349
abort. Also, most compilers know that abort() does not return, so
350
can better optimize code conditionally calling it.
351
352
PROCEED_ON_ERROR default: defined as 0 (false)
353
Controls whether detected bad addresses cause them to bypassed
354
rather than aborting. If set, detected bad arguments to free and
355
realloc are ignored. And all bookkeeping information is zeroed out
356
upon a detected overwrite of freed heap space, thus losing the
357
ability to ever return it from malloc again, but enabling the
358
application to proceed. If PROCEED_ON_ERROR is defined, the
359
static variable malloc_corruption_error_count is compiled in
360
and can be examined to see if errors have occurred. This option
361
generates slower code than the default abort policy.
362
363
DEBUG default: NOT defined
364
The DEBUG setting is mainly intended for people trying to modify
365
this code or diagnose problems when porting to new platforms.
366
However, it may also be able to better isolate user errors than just
367
using runtime checks. The assertions in the check routines spell
368
out in more detail the assumptions and invariants underlying the
369
algorithms. The checking is fairly extensive, and will slow down
370
execution noticeably. Calling malloc_stats or mallinfo with DEBUG
371
set will attempt to check every non-mmapped allocated and free chunk
372
in the course of computing the summaries.
373
374
ABORT_ON_ASSERT_FAILURE default: defined as 1 (true)
375
Debugging assertion failures can be nearly impossible if your
376
version of the assert macro causes malloc to be called, which will
377
lead to a cascade of further failures, blowing the runtime stack.
378
ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(),
379
which will usually make debugging easier.
380
381
MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32
382
The action to take before "return 0" when malloc fails to be able to
383
return memory because there is none available.
384
385
HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES
386
True if this system supports sbrk or an emulation of it.
387
388
MORECORE default: sbrk
389
The name of the sbrk-style system routine to call to obtain more
390
memory. See below for guidance on writing custom MORECORE
391
functions. The type of the argument to sbrk/MORECORE varies across
392
systems. It cannot be size_t, because it supports negative
393
arguments, so it is normally the signed type of the same width as
394
size_t (sometimes declared as "intptr_t"). It doesn't much matter
395
though. Internally, we only call it with arguments less than half
396
the max value of a size_t, which should work across all reasonable
397
possibilities, although sometimes generating compiler warnings.
398
399
MORECORE_CONTIGUOUS default: 1 (true) if HAVE_MORECORE
400
If true, take advantage of fact that consecutive calls to MORECORE
401
with positive arguments always return contiguous increasing
402
addresses. This is true of unix sbrk. It does not hurt too much to
403
set it true anyway, since malloc copes with non-contiguities.
404
Setting it false when definitely non-contiguous saves time
405
and possibly wasted space it would take to discover this though.
406
407
MORECORE_CANNOT_TRIM default: NOT defined
408
True if MORECORE cannot release space back to the system when given
409
negative arguments. This is generally necessary only if you are
410
using a hand-crafted MORECORE function that cannot handle negative
411
arguments.
412
413
NO_SEGMENT_TRAVERSAL default: 0
414
If non-zero, suppresses traversals of memory segments
415
returned by either MORECORE or CALL_MMAP. This disables
416
merging of segments that are contiguous, and selectively
417
releasing them to the OS if unused, but bounds execution times.
418
419
HAVE_MMAP default: 1 (true)
420
True if this system supports mmap or an emulation of it. If so, and
421
HAVE_MORECORE is not true, MMAP is used for all system
422
allocation. If set and HAVE_MORECORE is true as well, MMAP is
423
primarily used to directly allocate very large blocks. It is also
424
used as a backup strategy in cases where MORECORE fails to provide
425
space from system. Note: A single call to MUNMAP is assumed to be
426
able to unmap memory that may have be allocated using multiple calls
427
to MMAP, so long as they are adjacent.
428
429
HAVE_MREMAP default: 1 on linux, else 0
430
If true realloc() uses mremap() to re-allocate large blocks and
431
extend or shrink allocation spaces.
432
433
MMAP_CLEARS default: 1 except on WINCE.
434
True if mmap clears memory so calloc doesn't need to. This is true
435
for standard unix mmap using /dev/zero and on WIN32 except for WINCE.
436
437
USE_BUILTIN_FFS default: 0 (i.e., not used)
438
Causes malloc to use the builtin ffs() function to compute indices.
439
Some compilers may recognize and intrinsify ffs to be faster than the
440
supplied C version. Also, the case of x86 using gcc is special-cased
441
to an asm instruction, so is already as fast as it can be, and so
442
this setting has no effect. Similarly for Win32 under recent MS compilers.
443
(On most x86s, the asm version is only slightly faster than the C version.)
444
445
malloc_getpagesize default: derive from system includes, or 4096.
446
The system page size. To the extent possible, this malloc manages
447
memory from the system in page-size units. This may be (and
448
usually is) a function rather than a constant. This is ignored
449
if WIN32, where page size is determined using getSystemInfo during
450
initialization.
451
452
USE_DEV_RANDOM default: 0 (i.e., not used)
453
Causes malloc to use /dev/random to initialize secure magic seed for
454
stamping footers. Otherwise, the current time is used.
455
456
NO_MALLINFO default: 0
457
If defined, don't compile "mallinfo". This can be a simple way
458
of dealing with mismatches between system declarations and
459
those in this file.
460
461
MALLINFO_FIELD_TYPE default: size_t
462
The type of the fields in the mallinfo struct. This was originally
463
defined as "int" in SVID etc, but is more usefully defined as
464
size_t. The value is used only if HAVE_USR_INCLUDE_MALLOC_H is not set
465
466
NO_MALLOC_STATS default: 0
467
If defined, don't compile "malloc_stats". This avoids calls to
468
fprintf and bringing in stdio dependencies you might not want.
469
470
REALLOC_ZERO_BYTES_FREES default: not defined
471
This should be set if a call to realloc with zero bytes should
472
be the same as a call to free. Some people think it should. Otherwise,
473
since this malloc returns a unique pointer for malloc(0), so does
474
realloc(p, 0).
475
476
LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H
477
LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H, LACKS_ERRNO_H
478
LACKS_STDLIB_H LACKS_SCHED_H LACKS_TIME_H default: NOT defined unless on WIN32
479
Define these if your system does not have these header files.
480
You might need to manually insert some of the declarations they provide.
481
482
DEFAULT_GRANULARITY default: page size if MORECORE_CONTIGUOUS,
483
system_info.dwAllocationGranularity in WIN32,
484
otherwise 64K.
485
Also settable using mallopt(M_GRANULARITY, x)
486
The unit for allocating and deallocating memory from the system. On
487
most systems with contiguous MORECORE, there is no reason to
488
make this more than a page. However, systems with MMAP tend to
489
either require or encourage larger granularities. You can increase
490
this value to prevent system allocation functions to be called so
491
often, especially if they are slow. The value must be at least one
492
page and must be a power of two. Setting to 0 causes initialization
493
to either page size or win32 region size. (Note: In previous
494
versions of malloc, the equivalent of this option was called
495
"TOP_PAD")
496
497
DEFAULT_TRIM_THRESHOLD default: 2MB
498
Also settable using mallopt(M_TRIM_THRESHOLD, x)
499
The maximum amount of unused top-most memory to keep before
500
releasing via malloc_trim in free(). Automatic trimming is mainly
501
useful in long-lived programs using contiguous MORECORE. Because
502
trimming via sbrk can be slow on some systems, and can sometimes be
503
wasteful (in cases where programs immediately afterward allocate
504
more large chunks) the value should be high enough so that your
505
overall system performance would improve by releasing this much
506
memory. As a rough guide, you might set to a value close to the
507
average size of a process (program) running on your system.
508
Releasing this much memory would allow such a process to run in
509
memory. Generally, it is worth tuning trim thresholds when a
510
program undergoes phases where several large chunks are allocated
511
and released in ways that can reuse each other's storage, perhaps
512
mixed with phases where there are no such chunks at all. The trim
513
value must be greater than page size to have any useful effect. To
514
disable trimming completely, you can set to MAX_SIZE_T. Note that the trick
515
some people use of mallocing a huge space and then freeing it at
516
program startup, in an attempt to reserve system memory, doesn't
517
have the intended effect under automatic trimming, since that memory
518
will immediately be returned to the system.
519
520
DEFAULT_MMAP_THRESHOLD default: 256K
521
Also settable using mallopt(M_MMAP_THRESHOLD, x)
522
The request size threshold for using MMAP to directly service a
523
request. Requests of at least this size that cannot be allocated
524
using already-existing space will be serviced via mmap. (If enough
525
normal freed space already exists it is used instead.) Using mmap
526
segregates relatively large chunks of memory so that they can be
527
individually obtained and released from the host system. A request
528
serviced through mmap is never reused by any other request (at least
529
not directly; the system may just so happen to remap successive
530
requests to the same locations). Segregating space in this way has
531
the benefits that: Mmapped space can always be individually released
532
back to the system, which helps keep the system level memory demands
533
of a long-lived program low. Also, mapped memory doesn't become
534
`locked' between other chunks, as can happen with normally allocated
535
chunks, which means that even trimming via malloc_trim would not
536
release them. However, it has the disadvantage that the space
537
cannot be reclaimed, consolidated, and then used to service later
538
requests, as happens with normal chunks. The advantages of mmap
539
nearly always outweigh disadvantages for "large" chunks, but the
540
value of "large" may vary across systems. The default is an
541
empirically derived value that works well in most systems. You can
542
disable mmap by setting to MAX_SIZE_T.
543
544
MAX_RELEASE_CHECK_RATE default: 4095 unless not HAVE_MMAP
545
The number of consolidated frees between checks to release
546
unused segments when freeing. When using non-contiguous segments,
547
especially with multiple mspaces, checking only for topmost space
548
doesn't always suffice to trigger trimming. To compensate for this,
549
free() will, with a period of MAX_RELEASE_CHECK_RATE (or the
550
current number of segments, if greater) try to release unused
551
segments to the OS when freeing chunks that result in
552
consolidation. The best value for this parameter is a compromise
553
between slowing down frees with relatively costly checks that
554
rarely trigger versus holding on to unused memory. To effectively
555
disable, set to MAX_SIZE_T. This may lead to a very slight speed
556
improvement at the expense of carrying around more memory.
557
*/
558
559
/* Version identifier to allow people to support multiple versions */
560
#ifndef DLMALLOC_VERSION
561
#define DLMALLOC_VERSION 20806
562
#endif /* DLMALLOC_VERSION */
563
564
#ifndef DLMALLOC_EXPORT
565
#define DLMALLOC_EXPORT extern
566
#endif
567
568
#ifndef WIN32
569
#ifdef _WIN32
570
#define WIN32 1
571
#endif /* _WIN32 */
572
#ifdef _WIN32_WCE
573
#define LACKS_FCNTL_H
574
#define WIN32 1
575
#endif /* _WIN32_WCE */
576
#endif /* WIN32 */
577
#ifdef WIN32
578
#define WIN32_LEAN_AND_MEAN
579
#include <windows.h>
580
#include <tchar.h>
581
#define HAVE_MMAP 1
582
#define HAVE_MORECORE 0
583
#define LACKS_UNISTD_H
584
#define LACKS_SYS_PARAM_H
585
#define LACKS_SYS_MMAN_H
586
#define LACKS_STRING_H
587
#define LACKS_STRINGS_H
588
#define LACKS_SYS_TYPES_H
589
// #define LACKS_ERRNO_H // File uses `EINVAL` and `ENOMEM` defines, so include is required. Legacy exclusion?
590
#define LACKS_SCHED_H
591
#ifndef MALLOC_FAILURE_ACTION
592
#define MALLOC_FAILURE_ACTION
593
#endif /* MALLOC_FAILURE_ACTION */
594
#ifndef MMAP_CLEARS
595
#ifdef _WIN32_WCE /* WINCE reportedly does not clear */
596
#define MMAP_CLEARS 0
597
#else
598
#define MMAP_CLEARS 1
599
#endif /* _WIN32_WCE */
600
#endif /*MMAP_CLEARS */
601
#endif /* WIN32 */
602
603
#if defined(DARWIN) || defined(_DARWIN)
604
/* Mac OSX docs advise not to use sbrk; it seems better to use mmap */
605
#ifndef HAVE_MORECORE
606
#define HAVE_MORECORE 0
607
#define HAVE_MMAP 1
608
/* OSX allocators provide 16 byte alignment */
609
#ifndef MALLOC_ALIGNMENT
610
#define MALLOC_ALIGNMENT ((size_t)16U)
611
#endif
612
#endif /* HAVE_MORECORE */
613
#endif /* DARWIN */
614
615
#ifndef LACKS_SYS_TYPES_H
616
#include <sys/types.h> /* For size_t */
617
#endif /* LACKS_SYS_TYPES_H */
618
619
/* The maximum possible size_t value has all bits set */
620
#define MAX_SIZE_T (~(size_t)0)
621
622
#ifndef USE_LOCKS /* ensure true if spin or recursive locks set */
623
#define USE_LOCKS ((defined(USE_SPIN_LOCKS) && USE_SPIN_LOCKS != 0) || \
624
(defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0))
625
#endif /* USE_LOCKS */
626
627
#if USE_LOCKS /* Spin locks for gcc >= 4.1, older gcc on x86, MSC >= 1310 */
628
#if ((defined(__GNUC__) && \
629
((__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 1)) || \
630
defined(__i386__) || defined(__x86_64__))) || \
631
(defined(_MSC_VER) && _MSC_VER>=1310))
632
#ifndef USE_SPIN_LOCKS
633
#define USE_SPIN_LOCKS 1
634
#endif /* USE_SPIN_LOCKS */
635
#elif USE_SPIN_LOCKS
636
#error "USE_SPIN_LOCKS defined without implementation"
637
#endif /* ... locks available... */
638
#elif !defined(USE_SPIN_LOCKS)
639
#define USE_SPIN_LOCKS 0
640
#endif /* USE_LOCKS */
641
642
#ifndef ONLY_MSPACES
643
#define ONLY_MSPACES 0
644
#endif /* ONLY_MSPACES */
645
#ifndef MSPACES
646
#if ONLY_MSPACES
647
#define MSPACES 1
648
#else /* ONLY_MSPACES */
649
#define MSPACES 0
650
#endif /* ONLY_MSPACES */
651
#endif /* MSPACES */
652
#ifndef MALLOC_ALIGNMENT
653
#define MALLOC_ALIGNMENT ((size_t)(2 * sizeof(void *)))
654
#endif /* MALLOC_ALIGNMENT */
655
#ifndef FOOTERS
656
#define FOOTERS 0
657
#endif /* FOOTERS */
658
#ifndef ABORT
659
#define ABORT abort()
660
#endif /* ABORT */
661
#ifndef ABORT_ON_ASSERT_FAILURE
662
#define ABORT_ON_ASSERT_FAILURE 1
663
#endif /* ABORT_ON_ASSERT_FAILURE */
664
#ifndef PROCEED_ON_ERROR
665
#define PROCEED_ON_ERROR 0
666
#endif /* PROCEED_ON_ERROR */
667
668
#ifndef INSECURE
669
#define INSECURE 0
670
#endif /* INSECURE */
671
#ifndef MALLOC_INSPECT_ALL
672
#define MALLOC_INSPECT_ALL 0
673
#endif /* MALLOC_INSPECT_ALL */
674
#ifndef HAVE_MMAP
675
#define HAVE_MMAP 1
676
#endif /* HAVE_MMAP */
677
#ifndef MMAP_CLEARS
678
#define MMAP_CLEARS 1
679
#endif /* MMAP_CLEARS */
680
#ifndef HAVE_MREMAP
681
#ifdef linux
682
#define HAVE_MREMAP 1
683
#define _GNU_SOURCE /* Turns on mremap() definition */
684
#else /* linux */
685
#define HAVE_MREMAP 0
686
#endif /* linux */
687
#endif /* HAVE_MREMAP */
688
#ifndef MALLOC_FAILURE_ACTION
689
#define MALLOC_FAILURE_ACTION errno = ENOMEM;
690
#endif /* MALLOC_FAILURE_ACTION */
691
#ifndef HAVE_MORECORE
692
#if ONLY_MSPACES
693
#define HAVE_MORECORE 0
694
#else /* ONLY_MSPACES */
695
#define HAVE_MORECORE 1
696
#endif /* ONLY_MSPACES */
697
#endif /* HAVE_MORECORE */
698
#if !HAVE_MORECORE
699
#define MORECORE_CONTIGUOUS 0
700
#else /* !HAVE_MORECORE */
701
#define MORECORE_DEFAULT sbrk
702
#ifndef MORECORE_CONTIGUOUS
703
#define MORECORE_CONTIGUOUS 1
704
#endif /* MORECORE_CONTIGUOUS */
705
#endif /* HAVE_MORECORE */
706
#ifndef DEFAULT_GRANULARITY
707
#if (MORECORE_CONTIGUOUS || defined(WIN32))
708
#define DEFAULT_GRANULARITY (0) /* 0 means to compute in init_mparams */
709
#else /* MORECORE_CONTIGUOUS */
710
#define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U)
711
#endif /* MORECORE_CONTIGUOUS */
712
#endif /* DEFAULT_GRANULARITY */
713
#ifndef DEFAULT_TRIM_THRESHOLD
714
#ifndef MORECORE_CANNOT_TRIM
715
#define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
716
#else /* MORECORE_CANNOT_TRIM */
717
#define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T
718
#endif /* MORECORE_CANNOT_TRIM */
719
#endif /* DEFAULT_TRIM_THRESHOLD */
720
#ifndef DEFAULT_MMAP_THRESHOLD
721
#if HAVE_MMAP
722
#define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U)
723
#else /* HAVE_MMAP */
724
#define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T
725
#endif /* HAVE_MMAP */
726
#endif /* DEFAULT_MMAP_THRESHOLD */
727
#ifndef MAX_RELEASE_CHECK_RATE
728
#if HAVE_MMAP
729
#define MAX_RELEASE_CHECK_RATE 4095
730
#else
731
#define MAX_RELEASE_CHECK_RATE MAX_SIZE_T
732
#endif /* HAVE_MMAP */
733
#endif /* MAX_RELEASE_CHECK_RATE */
734
#ifndef USE_BUILTIN_FFS
735
#define USE_BUILTIN_FFS 0
736
#endif /* USE_BUILTIN_FFS */
737
#ifndef USE_DEV_RANDOM
738
#define USE_DEV_RANDOM 0
739
#endif /* USE_DEV_RANDOM */
740
#ifndef NO_MALLINFO
741
#define NO_MALLINFO 0
742
#endif /* NO_MALLINFO */
743
#ifndef MALLINFO_FIELD_TYPE
744
#define MALLINFO_FIELD_TYPE size_t
745
#endif /* MALLINFO_FIELD_TYPE */
746
#ifndef NO_MALLOC_STATS
747
#define NO_MALLOC_STATS 0
748
#endif /* NO_MALLOC_STATS */
749
#ifndef NO_SEGMENT_TRAVERSAL
750
#define NO_SEGMENT_TRAVERSAL 0
751
#endif /* NO_SEGMENT_TRAVERSAL */
752
753
/*
754
mallopt tuning options. SVID/XPG defines four standard parameter
755
numbers for mallopt, normally defined in malloc.h. None of these
756
are used in this malloc, so setting them has no effect. But this
757
malloc does support the following options.
758
*/
759
760
#define M_TRIM_THRESHOLD (-1)
761
#define M_GRANULARITY (-2)
762
#define M_MMAP_THRESHOLD (-3)
763
764
/* ------------------------ Mallinfo declarations ------------------------ */
765
766
#if !NO_MALLINFO
767
/*
768
This version of malloc supports the standard SVID/XPG mallinfo
769
routine that returns a struct containing usage properties and
770
statistics. It should work on any system that has a
771
/usr/include/malloc.h defining struct mallinfo. The main
772
declaration needed is the mallinfo struct that is returned (by-copy)
773
by mallinfo(). The malloinfo struct contains a bunch of fields that
774
are not even meaningful in this version of malloc. These fields are
775
are instead filled by mallinfo() with other numbers that might be of
776
interest.
777
778
HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
779
/usr/include/malloc.h file that includes a declaration of struct
780
mallinfo. If so, it is included; else a compliant version is
781
declared below. These must be precisely the same for mallinfo() to
782
work. The original SVID version of this struct, defined on most
783
systems with mallinfo, declares all fields as ints. But some others
784
define as unsigned long. If your system defines the fields using a
785
type of different width than listed here, you MUST #include your
786
system version and #define HAVE_USR_INCLUDE_MALLOC_H.
787
*/
788
789
/* #define HAVE_USR_INCLUDE_MALLOC_H */
790
791
#ifdef HAVE_USR_INCLUDE_MALLOC_H
792
#include "/usr/include/malloc.h"
793
#else /* HAVE_USR_INCLUDE_MALLOC_H */
794
#ifndef STRUCT_MALLINFO_DECLARED
795
/* HP-UX (and others?) redefines mallinfo unless _STRUCT_MALLINFO is defined */
796
#define _STRUCT_MALLINFO
797
#define STRUCT_MALLINFO_DECLARED 1
798
struct mallinfo {
799
MALLINFO_FIELD_TYPE arena; /* non-mmapped space allocated from system */
800
MALLINFO_FIELD_TYPE ordblks; /* number of free chunks */
801
MALLINFO_FIELD_TYPE smblks; /* always 0 */
802
MALLINFO_FIELD_TYPE hblks; /* always 0 */
803
MALLINFO_FIELD_TYPE hblkhd; /* space in mmapped regions */
804
MALLINFO_FIELD_TYPE usmblks; /* maximum total allocated space */
805
MALLINFO_FIELD_TYPE fsmblks; /* always 0 */
806
MALLINFO_FIELD_TYPE uordblks; /* total allocated space */
807
MALLINFO_FIELD_TYPE fordblks; /* total free space */
808
MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */
809
};
810
#endif /* STRUCT_MALLINFO_DECLARED */
811
#endif /* HAVE_USR_INCLUDE_MALLOC_H */
812
#endif /* NO_MALLINFO */
813
814
/*
815
Try to persuade compilers to inline. The most critical functions for
816
inlining are defined as macros, so these aren't used for them.
817
*/
818
819
#if 0 /* SDL */
820
#ifndef FORCEINLINE
821
#if defined(__GNUC__)
822
#define FORCEINLINE __inline __attribute__ ((always_inline))
823
#elif defined(_MSC_VER)
824
#define FORCEINLINE __forceinline
825
#endif
826
#endif
827
#endif /* SDL */
828
#ifndef NOINLINE
829
#if defined(__GNUC__)
830
#define NOINLINE __attribute__ ((noinline))
831
#elif defined(_MSC_VER)
832
#define NOINLINE __declspec(noinline)
833
#else
834
#define NOINLINE
835
#endif
836
#endif
837
838
#ifdef __cplusplus
839
extern "C" {
840
#if 0 /* SDL */
841
#ifndef FORCEINLINE
842
#define FORCEINLINE inline
843
#endif
844
#endif /* SDL */
845
#endif /* __cplusplus */
846
#if 0 /* SDL */
847
#ifndef FORCEINLINE
848
#define FORCEINLINE
849
#endif
850
#endif /* SDL_FORCE_INLINE */
851
852
#if !ONLY_MSPACES
853
854
/* ------------------- Declarations of public routines ------------------- */
855
856
#ifndef USE_DL_PREFIX
857
#define dlcalloc calloc
858
#define dlfree free
859
#define dlmalloc malloc
860
#define dlmemalign memalign
861
#define dlposix_memalign posix_memalign
862
#define dlrealloc realloc
863
#define dlrealloc_in_place realloc_in_place
864
#define dlvalloc valloc
865
#define dlpvalloc pvalloc
866
#define dlmallinfo mallinfo
867
#define dlmallopt mallopt
868
#define dlmalloc_trim malloc_trim
869
#define dlmalloc_stats malloc_stats
870
#define dlmalloc_usable_size malloc_usable_size
871
#define dlmalloc_footprint malloc_footprint
872
#define dlmalloc_max_footprint malloc_max_footprint
873
#define dlmalloc_footprint_limit malloc_footprint_limit
874
#define dlmalloc_set_footprint_limit malloc_set_footprint_limit
875
#define dlmalloc_inspect_all malloc_inspect_all
876
#define dlindependent_calloc independent_calloc
877
#define dlindependent_comalloc independent_comalloc
878
#define dlbulk_free bulk_free
879
#endif /* USE_DL_PREFIX */
880
881
/*
882
malloc(size_t n)
883
Returns a pointer to a newly allocated chunk of at least n bytes, or
884
null if no space is available, in which case errno is set to ENOMEM
885
on ANSI C systems.
886
887
If n is zero, malloc returns a minimum-sized chunk. (The minimum
888
size is 16 bytes on most 32bit systems, and 32 bytes on 64bit
889
systems.) Note that size_t is an unsigned type, so calls with
890
arguments that would be negative if signed are interpreted as
891
requests for huge amounts of space, which will often fail. The
892
maximum supported value of n differs across systems, but is in all
893
cases less than the maximum representable value of a size_t.
894
*/
895
DLMALLOC_EXPORT void* dlmalloc(size_t);
896
897
/*
898
free(void* p)
899
Releases the chunk of memory pointed to by p, that had been previously
900
allocated using malloc or a related routine such as realloc.
901
It has no effect if p is null. If p was not malloced or already
902
freed, free(p) will by default cause the current program to abort.
903
*/
904
DLMALLOC_EXPORT void dlfree(void*);
905
906
/*
907
calloc(size_t n_elements, size_t element_size);
908
Returns a pointer to n_elements * element_size bytes, with all locations
909
set to zero.
910
*/
911
DLMALLOC_EXPORT void* dlcalloc(size_t, size_t);
912
913
/*
914
realloc(void* p, size_t n)
915
Returns a pointer to a chunk of size n that contains the same data
916
as does chunk p up to the minimum of (n, p's size) bytes, or null
917
if no space is available.
918
919
The returned pointer may or may not be the same as p. The algorithm
920
prefers extending p in most cases when possible, otherwise it
921
employs the equivalent of a malloc-copy-free sequence.
922
923
If p is null, realloc is equivalent to malloc.
924
925
If space is not available, realloc returns null, errno is set (if on
926
ANSI) and p is NOT freed.
927
928
if n is for fewer bytes than already held by p, the newly unused
929
space is lopped off and freed if possible. realloc with a size
930
argument of zero (re)allocates a minimum-sized chunk.
931
932
The old unix realloc convention of allowing the last-free'd chunk
933
to be used as an argument to realloc is not supported.
934
*/
935
DLMALLOC_EXPORT void* dlrealloc(void*, size_t);
936
937
/*
938
realloc_in_place(void* p, size_t n)
939
Resizes the space allocated for p to size n, only if this can be
940
done without moving p (i.e., only if there is adjacent space
941
available if n is greater than p's current allocated size, or n is
942
less than or equal to p's size). This may be used instead of plain
943
realloc if an alternative allocation strategy is needed upon failure
944
to expand space; for example, reallocation of a buffer that must be
945
memory-aligned or cleared. You can use realloc_in_place to trigger
946
these alternatives only when needed.
947
948
Returns p if successful; otherwise null.
949
*/
950
DLMALLOC_EXPORT void* dlrealloc_in_place(void*, size_t);
951
952
/*
953
memalign(size_t alignment, size_t n);
954
Returns a pointer to a newly allocated chunk of n bytes, aligned
955
in accord with the alignment argument.
956
957
The alignment argument should be a power of two. If the argument is
958
not a power of two, the nearest greater power is used.
959
8-byte alignment is guaranteed by normal malloc calls, so don't
960
bother calling memalign with an argument of 8 or less.
961
962
Overreliance on memalign is a sure way to fragment space.
963
*/
964
DLMALLOC_EXPORT void* dlmemalign(size_t, size_t);
965
966
/*
967
int posix_memalign(void** pp, size_t alignment, size_t n);
968
Allocates a chunk of n bytes, aligned in accord with the alignment
969
argument. Differs from memalign only in that it (1) assigns the
970
allocated memory to *pp rather than returning it, (2) fails and
971
returns EINVAL if the alignment is not a power of two (3) fails and
972
returns ENOMEM if memory cannot be allocated.
973
*/
974
DLMALLOC_EXPORT int dlposix_memalign(void**, size_t, size_t);
975
976
/*
977
valloc(size_t n);
978
Equivalent to memalign(pagesize, n), where pagesize is the page
979
size of the system. If the pagesize is unknown, 4096 is used.
980
*/
981
DLMALLOC_EXPORT void* dlvalloc(size_t);
982
983
/*
984
mallopt(int parameter_number, int parameter_value)
985
Sets tunable parameters The format is to provide a
986
(parameter-number, parameter-value) pair. mallopt then sets the
987
corresponding parameter to the argument value if it can (i.e., so
988
long as the value is meaningful), and returns 1 if successful else
989
0. To workaround the fact that mallopt is specified to use int,
990
not size_t parameters, the value -1 is specially treated as the
991
maximum unsigned size_t value.
992
993
SVID/XPG/ANSI defines four standard param numbers for mallopt,
994
normally defined in malloc.h. None of these are use in this malloc,
995
so setting them has no effect. But this malloc also supports other
996
options in mallopt. See below for details. Briefly, supported
997
parameters are as follows (listed defaults are for "typical"
998
configurations).
999
1000
Symbol param # default allowed param values
1001
M_TRIM_THRESHOLD -1 2*1024*1024 any (-1 disables)
1002
M_GRANULARITY -2 page size any power of 2 >= page size
1003
M_MMAP_THRESHOLD -3 256*1024 any (or 0 if no MMAP support)
1004
*/
1005
DLMALLOC_EXPORT int dlmallopt(int, int);
1006
1007
/*
1008
malloc_footprint();
1009
Returns the number of bytes obtained from the system. The total
1010
number of bytes allocated by malloc, realloc etc., is less than this
1011
value. Unlike mallinfo, this function returns only a precomputed
1012
result, so can be called frequently to monitor memory consumption.
1013
Even if locks are otherwise defined, this function does not use them,
1014
so results might not be up to date.
1015
*/
1016
DLMALLOC_EXPORT size_t dlmalloc_footprint(void);
1017
1018
/*
1019
malloc_max_footprint();
1020
Returns the maximum number of bytes obtained from the system. This
1021
value will be greater than current footprint if deallocated space
1022
has been reclaimed by the system. The peak number of bytes allocated
1023
by malloc, realloc etc., is less than this value. Unlike mallinfo,
1024
this function returns only a precomputed result, so can be called
1025
frequently to monitor memory consumption. Even if locks are
1026
otherwise defined, this function does not use them, so results might
1027
not be up to date.
1028
*/
1029
DLMALLOC_EXPORT size_t dlmalloc_max_footprint(void);
1030
1031
/*
1032
malloc_footprint_limit();
1033
Returns the number of bytes that the heap is allowed to obtain from
1034
the system, returning the last value returned by
1035
malloc_set_footprint_limit, or the maximum size_t value if
1036
never set. The returned value reflects a permission. There is no
1037
guarantee that this number of bytes can actually be obtained from
1038
the system.
1039
*/
1040
DLMALLOC_EXPORT size_t dlmalloc_footprint_limit();
1041
1042
/*
1043
malloc_set_footprint_limit();
1044
Sets the maximum number of bytes to obtain from the system, causing
1045
failure returns from malloc and related functions upon attempts to
1046
exceed this value. The argument value may be subject to page
1047
rounding to an enforceable limit; this actual value is returned.
1048
Using an argument of the maximum possible size_t effectively
1049
disables checks. If the argument is less than or equal to the
1050
current malloc_footprint, then all future allocations that require
1051
additional system memory will fail. However, invocation cannot
1052
retroactively deallocate existing used memory.
1053
*/
1054
DLMALLOC_EXPORT size_t dlmalloc_set_footprint_limit(size_t bytes);
1055
1056
#if MALLOC_INSPECT_ALL
1057
/*
1058
malloc_inspect_all(void(*handler)(void *start,
1059
void *end,
1060
size_t used_bytes,
1061
void* callback_arg),
1062
void* arg);
1063
Traverses the heap and calls the given handler for each managed
1064
region, skipping all bytes that are (or may be) used for bookkeeping
1065
purposes. Traversal does not include include chunks that have been
1066
directly memory mapped. Each reported region begins at the start
1067
address, and continues up to but not including the end address. The
1068
first used_bytes of the region contain allocated data. If
1069
used_bytes is zero, the region is unallocated. The handler is
1070
invoked with the given callback argument. If locks are defined, they
1071
are held during the entire traversal. It is a bad idea to invoke
1072
other malloc functions from within the handler.
1073
1074
For example, to count the number of in-use chunks with size greater
1075
than 1000, you could write:
1076
static int count = 0;
1077
void count_chunks(void* start, void* end, size_t used, void* arg) {
1078
if (used >= 1000) ++count;
1079
}
1080
then:
1081
malloc_inspect_all(count_chunks, NULL);
1082
1083
malloc_inspect_all is compiled only if MALLOC_INSPECT_ALL is defined.
1084
*/
1085
DLMALLOC_EXPORT void dlmalloc_inspect_all(void(*handler)(void*, void *, size_t, void*),
1086
void* arg);
1087
1088
#endif /* MALLOC_INSPECT_ALL */
1089
1090
#if !NO_MALLINFO
1091
/*
1092
mallinfo()
1093
Returns (by copy) a struct containing various summary statistics:
1094
1095
arena: current total non-mmapped bytes allocated from system
1096
ordblks: the number of free chunks
1097
smblks: always zero.
1098
hblks: current number of mmapped regions
1099
hblkhd: total bytes held in mmapped regions
1100
usmblks: the maximum total allocated space. This will be greater
1101
than current total if trimming has occurred.
1102
fsmblks: always zero
1103
uordblks: current total allocated space (normal or mmapped)
1104
fordblks: total free space
1105
keepcost: the maximum number of bytes that could ideally be released
1106
back to system via malloc_trim. ("ideally" means that
1107
it ignores page restrictions etc.)
1108
1109
Because these fields are ints, but internal bookkeeping may
1110
be kept as longs, the reported values may wrap around zero and
1111
thus be inaccurate.
1112
*/
1113
DLMALLOC_EXPORT struct mallinfo dlmallinfo(void);
1114
#endif /* NO_MALLINFO */
1115
1116
/*
1117
independent_calloc(size_t n_elements, size_t element_size, void* chunks[]);
1118
1119
independent_calloc is similar to calloc, but instead of returning a
1120
single cleared space, it returns an array of pointers to n_elements
1121
independent elements that can hold contents of size elem_size, each
1122
of which starts out cleared, and can be independently freed,
1123
realloc'ed etc. The elements are guaranteed to be adjacently
1124
allocated (this is not guaranteed to occur with multiple callocs or
1125
mallocs), which may also improve cache locality in some
1126
applications.
1127
1128
The "chunks" argument is optional (i.e., may be null, which is
1129
probably the most typical usage). If it is null, the returned array
1130
is itself dynamically allocated and should also be freed when it is
1131
no longer needed. Otherwise, the chunks array must be of at least
1132
n_elements in length. It is filled in with the pointers to the
1133
chunks.
1134
1135
In either case, independent_calloc returns this pointer array, or
1136
null if the allocation failed. If n_elements is zero and "chunks"
1137
is null, it returns a chunk representing an array with zero elements
1138
(which should be freed if not wanted).
1139
1140
Each element must be freed when it is no longer needed. This can be
1141
done all at once using bulk_free.
1142
1143
independent_calloc simplifies and speeds up implementations of many
1144
kinds of pools. It may also be useful when constructing large data
1145
structures that initially have a fixed number of fixed-sized nodes,
1146
but the number is not known at compile time, and some of the nodes
1147
may later need to be freed. For example:
1148
1149
struct Node { int item; struct Node* next; };
1150
1151
struct Node* build_list() {
1152
struct Node** pool;
1153
int n = read_number_of_nodes_needed();
1154
if (n <= 0) return 0;
1155
pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
1156
if (pool == 0) die();
1157
// organize into a linked list...
1158
struct Node* first = pool[0];
1159
for (i = 0; i < n-1; ++i)
1160
pool[i]->next = pool[i+1];
1161
free(pool); // Can now free the array (or not, if it is needed later)
1162
return first;
1163
}
1164
*/
1165
DLMALLOC_EXPORT void** dlindependent_calloc(size_t, size_t, void**);
1166
1167
/*
1168
independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
1169
1170
independent_comalloc allocates, all at once, a set of n_elements
1171
chunks with sizes indicated in the "sizes" array. It returns
1172
an array of pointers to these elements, each of which can be
1173
independently freed, realloc'ed etc. The elements are guaranteed to
1174
be adjacently allocated (this is not guaranteed to occur with
1175
multiple callocs or mallocs), which may also improve cache locality
1176
in some applications.
1177
1178
The "chunks" argument is optional (i.e., may be null). If it is null
1179
the returned array is itself dynamically allocated and should also
1180
be freed when it is no longer needed. Otherwise, the chunks array
1181
must be of at least n_elements in length. It is filled in with the
1182
pointers to the chunks.
1183
1184
In either case, independent_comalloc returns this pointer array, or
1185
null if the allocation failed. If n_elements is zero and chunks is
1186
null, it returns a chunk representing an array with zero elements
1187
(which should be freed if not wanted).
1188
1189
Each element must be freed when it is no longer needed. This can be
1190
done all at once using bulk_free.
1191
1192
independent_comallac differs from independent_calloc in that each
1193
element may have a different size, and also that it does not
1194
automatically clear elements.
1195
1196
independent_comalloc can be used to speed up allocation in cases
1197
where several structs or objects must always be allocated at the
1198
same time. For example:
1199
1200
struct Head { ... }
1201
struct Foot { ... }
1202
1203
void send_message(char* msg) {
1204
int msglen = strlen(msg);
1205
size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
1206
void* chunks[3];
1207
if (independent_comalloc(3, sizes, chunks) == 0)
1208
die();
1209
struct Head* head = (struct Head*)(chunks[0]);
1210
char* body = (char*)(chunks[1]);
1211
struct Foot* foot = (struct Foot*)(chunks[2]);
1212
// ...
1213
}
1214
1215
In general though, independent_comalloc is worth using only for
1216
larger values of n_elements. For small values, you probably won't
1217
detect enough difference from series of malloc calls to bother.
1218
1219
Overuse of independent_comalloc can increase overall memory usage,
1220
since it cannot reuse existing noncontiguous small chunks that
1221
might be available for some of the elements.
1222
*/
1223
DLMALLOC_EXPORT void** dlindependent_comalloc(size_t, size_t*, void**);
1224
1225
/*
1226
bulk_free(void* array[], size_t n_elements)
1227
Frees and clears (sets to null) each non-null pointer in the given
1228
array. This is likely to be faster than freeing them one-by-one.
1229
If footers are used, pointers that have been allocated in different
1230
mspaces are not freed or cleared, and the count of all such pointers
1231
is returned. For large arrays of pointers with poor locality, it
1232
may be worthwhile to sort this array before calling bulk_free.
1233
*/
1234
DLMALLOC_EXPORT size_t dlbulk_free(void**, size_t n_elements);
1235
1236
/*
1237
pvalloc(size_t n);
1238
Equivalent to valloc(minimum-page-that-holds(n)), that is,
1239
round up n to nearest pagesize.
1240
*/
1241
DLMALLOC_EXPORT void* dlpvalloc(size_t);
1242
1243
/*
1244
malloc_trim(size_t pad);
1245
1246
If possible, gives memory back to the system (via negative arguments
1247
to sbrk) if there is unused memory at the `high' end of the malloc
1248
pool or in unused MMAP segments. You can call this after freeing
1249
large blocks of memory to potentially reduce the system-level memory
1250
requirements of a program. However, it cannot guarantee to reduce
1251
memory. Under some allocation patterns, some large free blocks of
1252
memory will be locked between two used chunks, so they cannot be
1253
given back to the system.
1254
1255
The `pad' argument to malloc_trim represents the amount of free
1256
trailing space to leave untrimmed. If this argument is zero, only
1257
the minimum amount of memory to maintain internal data structures
1258
will be left. Non-zero arguments can be supplied to maintain enough
1259
trailing space to service future expected allocations without having
1260
to re-obtain memory from the system.
1261
1262
Malloc_trim returns 1 if it actually released any memory, else 0.
1263
*/
1264
DLMALLOC_EXPORT int dlmalloc_trim(size_t);
1265
1266
/*
1267
malloc_stats();
1268
Prints on stderr the amount of space obtained from the system (both
1269
via sbrk and mmap), the maximum amount (which may be more than
1270
current if malloc_trim and/or munmap got called), and the current
1271
number of bytes allocated via malloc (or realloc, etc) but not yet
1272
freed. Note that this is the number of bytes allocated, not the
1273
number requested. It will be larger than the number requested
1274
because of alignment and bookkeeping overhead. Because it includes
1275
alignment wastage as being in use, this figure may be greater than
1276
zero even when no user-level chunks are allocated.
1277
1278
The reported current and maximum system memory can be inaccurate if
1279
a program makes other calls to system memory allocation functions
1280
(normally sbrk) outside of malloc.
1281
1282
malloc_stats prints only the most commonly interesting statistics.
1283
More information can be obtained by calling mallinfo.
1284
*/
1285
DLMALLOC_EXPORT void dlmalloc_stats(void);
1286
1287
/*
1288
malloc_usable_size(void* p);
1289
1290
Returns the number of bytes you can actually use in
1291
an allocated chunk, which may be more than you requested (although
1292
often not) due to alignment and minimum size constraints.
1293
You can use this many bytes without worrying about
1294
overwriting other allocated objects. This is not a particularly great
1295
programming practice. malloc_usable_size can be more useful in
1296
debugging and assertions, for example:
1297
1298
p = malloc(n);
1299
assert(malloc_usable_size(p) >= 256);
1300
*/
1301
size_t dlmalloc_usable_size(void*);
1302
1303
#endif /* ONLY_MSPACES */
1304
1305
#if MSPACES
1306
1307
/*
1308
mspace is an opaque type representing an independent
1309
region of space that supports mspace_malloc, etc.
1310
*/
1311
typedef void* mspace;
1312
1313
/*
1314
create_mspace creates and returns a new independent space with the
1315
given initial capacity, or, if 0, the default granularity size. It
1316
returns null if there is no system memory available to create the
1317
space. If argument locked is non-zero, the space uses a separate
1318
lock to control access. The capacity of the space will grow
1319
dynamically as needed to service mspace_malloc requests. You can
1320
control the sizes of incremental increases of this space by
1321
compiling with a different DEFAULT_GRANULARITY or dynamically
1322
setting with mallopt(M_GRANULARITY, value).
1323
*/
1324
DLMALLOC_EXPORT mspace create_mspace(size_t capacity, int locked);
1325
1326
/*
1327
destroy_mspace destroys the given space, and attempts to return all
1328
of its memory back to the system, returning the total number of
1329
bytes freed. After destruction, the results of access to all memory
1330
used by the space become undefined.
1331
*/
1332
DLMALLOC_EXPORT size_t destroy_mspace(mspace msp);
1333
1334
/*
1335
create_mspace_with_base uses the memory supplied as the initial base
1336
of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this
1337
space is used for bookkeeping, so the capacity must be at least this
1338
large. (Otherwise 0 is returned.) When this initial space is
1339
exhausted, additional memory will be obtained from the system.
1340
Destroying this space will deallocate all additionally allocated
1341
space (if possible) but not the initial base.
1342
*/
1343
DLMALLOC_EXPORT mspace create_mspace_with_base(void* base, size_t capacity, int locked);
1344
1345
/*
1346
mspace_track_large_chunks controls whether requests for large chunks
1347
are allocated in their own untracked mmapped regions, separate from
1348
others in this mspace. By default large chunks are not tracked,
1349
which reduces fragmentation. However, such chunks are not
1350
necessarily released to the system upon destroy_mspace. Enabling
1351
tracking by setting to true may increase fragmentation, but avoids
1352
leakage when relying on destroy_mspace to release all memory
1353
allocated using this space. The function returns the previous
1354
setting.
1355
*/
1356
DLMALLOC_EXPORT int mspace_track_large_chunks(mspace msp, int enable);
1357
1358
1359
/*
1360
mspace_malloc behaves as malloc, but operates within
1361
the given space.
1362
*/
1363
DLMALLOC_EXPORT void* mspace_malloc(mspace msp, size_t bytes);
1364
1365
/*
1366
mspace_free behaves as free, but operates within
1367
the given space.
1368
1369
If compiled with FOOTERS==1, mspace_free is not actually needed.
1370
free may be called instead of mspace_free because freed chunks from
1371
any space are handled by their originating spaces.
1372
*/
1373
DLMALLOC_EXPORT void mspace_free(mspace msp, void* mem);
1374
1375
/*
1376
mspace_realloc behaves as realloc, but operates within
1377
the given space.
1378
1379
If compiled with FOOTERS==1, mspace_realloc is not actually
1380
needed. realloc may be called instead of mspace_realloc because
1381
realloced chunks from any space are handled by their originating
1382
spaces.
1383
*/
1384
DLMALLOC_EXPORT void* mspace_realloc(mspace msp, void* mem, size_t newsize);
1385
1386
/*
1387
mspace_calloc behaves as calloc, but operates within
1388
the given space.
1389
*/
1390
DLMALLOC_EXPORT void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size);
1391
1392
/*
1393
mspace_memalign behaves as memalign, but operates within
1394
the given space.
1395
*/
1396
DLMALLOC_EXPORT void* mspace_memalign(mspace msp, size_t alignment, size_t bytes);
1397
1398
/*
1399
mspace_independent_calloc behaves as independent_calloc, but
1400
operates within the given space.
1401
*/
1402
DLMALLOC_EXPORT void** mspace_independent_calloc(mspace msp, size_t n_elements,
1403
size_t elem_size, void* chunks[]);
1404
1405
/*
1406
mspace_independent_comalloc behaves as independent_comalloc, but
1407
operates within the given space.
1408
*/
1409
DLMALLOC_EXPORT void** mspace_independent_comalloc(mspace msp, size_t n_elements,
1410
size_t sizes[], void* chunks[]);
1411
1412
/*
1413
mspace_footprint() returns the number of bytes obtained from the
1414
system for this space.
1415
*/
1416
DLMALLOC_EXPORT size_t mspace_footprint(mspace msp);
1417
1418
/*
1419
mspace_max_footprint() returns the peak number of bytes obtained from the
1420
system for this space.
1421
*/
1422
DLMALLOC_EXPORT size_t mspace_max_footprint(mspace msp);
1423
1424
1425
#if !NO_MALLINFO
1426
/*
1427
mspace_mallinfo behaves as mallinfo, but reports properties of
1428
the given space.
1429
*/
1430
DLMALLOC_EXPORT struct mallinfo mspace_mallinfo(mspace msp);
1431
#endif /* NO_MALLINFO */
1432
1433
/*
1434
malloc_usable_size(void* p) behaves the same as malloc_usable_size;
1435
*/
1436
DLMALLOC_EXPORT size_t mspace_usable_size(const void* mem);
1437
1438
/*
1439
mspace_malloc_stats behaves as malloc_stats, but reports
1440
properties of the given space.
1441
*/
1442
DLMALLOC_EXPORT void mspace_malloc_stats(mspace msp);
1443
1444
/*
1445
mspace_trim behaves as malloc_trim, but
1446
operates within the given space.
1447
*/
1448
DLMALLOC_EXPORT int mspace_trim(mspace msp, size_t pad);
1449
1450
/*
1451
An alias for mallopt.
1452
*/
1453
DLMALLOC_EXPORT int mspace_mallopt(int, int);
1454
1455
#endif /* MSPACES */
1456
1457
#ifdef __cplusplus
1458
} /* end of extern "C" */
1459
#endif /* __cplusplus */
1460
1461
/*
1462
========================================================================
1463
To make a fully customizable malloc.h header file, cut everything
1464
above this line, put into file malloc.h, edit to suit, and #include it
1465
on the next line, as well as in programs that use this malloc.
1466
========================================================================
1467
*/
1468
1469
/* #include "malloc.h" */
1470
1471
/*------------------------------ internal #includes ---------------------- */
1472
1473
#ifdef _MSC_VER
1474
#pragma warning( disable : 4146 ) /* no "unsigned" warnings */
1475
#endif /* _MSC_VER */
1476
#if !NO_MALLOC_STATS
1477
#include <stdio.h> /* for printing in malloc_stats */
1478
#endif /* NO_MALLOC_STATS */
1479
#ifndef LACKS_ERRNO_H
1480
#include <errno.h> /* for MALLOC_FAILURE_ACTION */
1481
#endif /* LACKS_ERRNO_H */
1482
#ifdef DEBUG
1483
#if ABORT_ON_ASSERT_FAILURE
1484
#undef assert
1485
#define assert(x) if(!(x)) ABORT
1486
#else /* ABORT_ON_ASSERT_FAILURE */
1487
#include <assert.h>
1488
#endif /* ABORT_ON_ASSERT_FAILURE */
1489
#else /* DEBUG */
1490
#ifndef assert
1491
#define assert(x)
1492
#endif
1493
#define DEBUG 0
1494
#endif /* DEBUG */
1495
#if !defined(WIN32) && !defined(LACKS_TIME_H)
1496
#include <time.h> /* for magic initialization */
1497
#endif /* WIN32 */
1498
#ifndef LACKS_STDLIB_H
1499
#include <stdlib.h> /* for abort() */
1500
#endif /* LACKS_STDLIB_H */
1501
#ifndef LACKS_STRING_H
1502
#include <string.h> /* for memset etc */
1503
#endif /* LACKS_STRING_H */
1504
#if USE_BUILTIN_FFS
1505
#ifndef LACKS_STRINGS_H
1506
#include <strings.h> /* for ffs */
1507
#endif /* LACKS_STRINGS_H */
1508
#endif /* USE_BUILTIN_FFS */
1509
#if HAVE_MMAP
1510
#ifndef LACKS_SYS_MMAN_H
1511
/* On some versions of linux, mremap decl in mman.h needs __USE_GNU set */
1512
#if (defined(linux) && !defined(__USE_GNU))
1513
#define __USE_GNU 1
1514
#include <sys/mman.h> /* for mmap */
1515
#undef __USE_GNU
1516
#else
1517
#include <sys/mman.h> /* for mmap */
1518
#endif /* linux */
1519
#endif /* LACKS_SYS_MMAN_H */
1520
#ifndef LACKS_FCNTL_H
1521
#include <fcntl.h>
1522
#endif /* LACKS_FCNTL_H */
1523
#endif /* HAVE_MMAP */
1524
#ifndef LACKS_UNISTD_H
1525
#include <unistd.h> /* for sbrk, sysconf */
1526
#else /* LACKS_UNISTD_H */
1527
#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
1528
extern void* sbrk(ptrdiff_t);
1529
#endif /* FreeBSD etc */
1530
#endif /* LACKS_UNISTD_H */
1531
1532
/* Declarations for locking */
1533
#if USE_LOCKS
1534
#ifndef WIN32
1535
#if defined (__SVR4) && defined (__sun) /* solaris */
1536
#include <thread.h>
1537
#elif !defined(LACKS_SCHED_H)
1538
#include <sched.h>
1539
#endif /* solaris or LACKS_SCHED_H */
1540
#if (defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0) || !USE_SPIN_LOCKS
1541
#include <pthread.h>
1542
#endif /* USE_RECURSIVE_LOCKS ... */
1543
#elif defined(_MSC_VER)
1544
#ifndef _M_AMD64
1545
/* These are already defined on AMD64 builds */
1546
#ifdef __cplusplus
1547
extern "C" {
1548
#endif /* __cplusplus */
1549
LONG __cdecl _InterlockedCompareExchange(LONG volatile *Dest, LONG Exchange, LONG Comp);
1550
LONG __cdecl _InterlockedExchange(LONG volatile *Target, LONG Value);
1551
#ifdef __cplusplus
1552
}
1553
#endif /* __cplusplus */
1554
#endif /* _M_AMD64 */
1555
#pragma intrinsic (_InterlockedCompareExchange)
1556
#pragma intrinsic (_InterlockedExchange)
1557
#define interlockedcompareexchange _InterlockedCompareExchange
1558
#define interlockedexchange _InterlockedExchange
1559
#elif defined(WIN32) && defined(__GNUC__)
1560
#define interlockedcompareexchange(a, b, c) __sync_val_compare_and_swap(a, c, b)
1561
#define interlockedexchange __sync_lock_test_and_set
1562
#endif /* Win32 */
1563
#else /* USE_LOCKS */
1564
#endif /* USE_LOCKS */
1565
1566
#ifndef LOCK_AT_FORK
1567
#define LOCK_AT_FORK 0
1568
#endif
1569
1570
/* Declarations for bit scanning on win32 */
1571
#if defined(_MSC_VER) && _MSC_VER>=1300
1572
#ifndef BitScanForward /* Try to avoid pulling in WinNT.h */
1573
#ifdef __cplusplus
1574
extern "C" {
1575
#endif /* __cplusplus */
1576
unsigned char _BitScanForward(unsigned long *index, unsigned long mask);
1577
unsigned char _BitScanReverse(unsigned long *index, unsigned long mask);
1578
#ifdef __cplusplus
1579
}
1580
#endif /* __cplusplus */
1581
1582
#define BitScanForward _BitScanForward
1583
#define BitScanReverse _BitScanReverse
1584
#pragma intrinsic(_BitScanForward)
1585
#pragma intrinsic(_BitScanReverse)
1586
#endif /* BitScanForward */
1587
#endif /* defined(_MSC_VER) && _MSC_VER>=1300 */
1588
1589
#ifndef WIN32
1590
#ifndef malloc_getpagesize
1591
# ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
1592
# ifndef _SC_PAGE_SIZE
1593
# define _SC_PAGE_SIZE _SC_PAGESIZE
1594
# endif
1595
# endif
1596
# ifdef _SC_PAGE_SIZE
1597
# define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
1598
# else
1599
# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
1600
extern int getpagesize();
1601
# define malloc_getpagesize getpagesize()
1602
# else
1603
# ifdef WIN32 /* use supplied emulation of getpagesize */
1604
# define malloc_getpagesize getpagesize()
1605
# else
1606
# ifndef LACKS_SYS_PARAM_H
1607
# include <sys/param.h>
1608
# endif
1609
# ifdef EXEC_PAGESIZE
1610
# define malloc_getpagesize EXEC_PAGESIZE
1611
# else
1612
# ifdef NBPG
1613
# ifndef CLSIZE
1614
# define malloc_getpagesize NBPG
1615
# else
1616
# define malloc_getpagesize (NBPG * CLSIZE)
1617
# endif
1618
# else
1619
# ifdef NBPC
1620
# define malloc_getpagesize NBPC
1621
# else
1622
# ifdef PAGESIZE
1623
# define malloc_getpagesize PAGESIZE
1624
# else /* just guess */
1625
# define malloc_getpagesize ((size_t)4096U)
1626
# endif
1627
# endif
1628
# endif
1629
# endif
1630
# endif
1631
# endif
1632
# endif
1633
#endif
1634
#endif
1635
1636
/* ------------------- size_t and alignment properties -------------------- */
1637
1638
/* The byte and bit size of a size_t */
1639
#define SIZE_T_SIZE (sizeof(size_t))
1640
#define SIZE_T_BITSIZE (sizeof(size_t) << 3)
1641
1642
/* Some constants coerced to size_t */
1643
/* Annoying but necessary to avoid errors on some platforms */
1644
#define SIZE_T_ZERO ((size_t)0)
1645
#define SIZE_T_ONE ((size_t)1)
1646
#define SIZE_T_TWO ((size_t)2)
1647
#define SIZE_T_FOUR ((size_t)4)
1648
#define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1)
1649
#define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2)
1650
#define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
1651
#define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U)
1652
1653
/* The bit mask value corresponding to MALLOC_ALIGNMENT */
1654
#define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE)
1655
1656
/* True if address a has acceptable alignment */
1657
#define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0)
1658
1659
/* the number of bytes to offset an address to align it */
1660
#define align_offset(A)\
1661
((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
1662
((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
1663
1664
/* -------------------------- MMAP preliminaries ------------------------- */
1665
1666
/*
1667
If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and
1668
checks to fail so compiler optimizer can delete code rather than
1669
using so many "#if"s.
1670
*/
1671
1672
1673
/* MORECORE and MMAP must return MFAIL on failure */
1674
#define MFAIL ((void*)(MAX_SIZE_T))
1675
#define CMFAIL ((char*)(MFAIL)) /* defined for convenience */
1676
1677
#if HAVE_MMAP
1678
1679
#ifndef WIN32
1680
#define MUNMAP_DEFAULT(a, s) munmap((a), (s))
1681
#define MMAP_PROT (PROT_READ|PROT_WRITE)
1682
#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
1683
#define MAP_ANONYMOUS MAP_ANON
1684
#endif /* MAP_ANON */
1685
#ifdef MAP_ANONYMOUS
1686
#define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS)
1687
#define MMAP_DEFAULT(s) mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0)
1688
#else /* MAP_ANONYMOUS */
1689
/*
1690
Nearly all versions of mmap support MAP_ANONYMOUS, so the following
1691
is unlikely to be needed, but is supplied just in case.
1692
*/
1693
#define MMAP_FLAGS (MAP_PRIVATE)
1694
static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
1695
#define MMAP_DEFAULT(s) ((dev_zero_fd < 0) ? \
1696
(dev_zero_fd = open("/dev/zero", O_RDWR), \
1697
mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \
1698
mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0))
1699
#endif /* MAP_ANONYMOUS */
1700
1701
#define DIRECT_MMAP_DEFAULT(s) MMAP_DEFAULT(s)
1702
1703
#else /* WIN32 */
1704
1705
/* Win32 MMAP via VirtualAlloc */
1706
SDL_FORCE_INLINE void* win32mmap(size_t size) {
1707
void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
1708
return (ptr != 0)? ptr: MFAIL;
1709
}
1710
1711
/* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
1712
SDL_FORCE_INLINE void* win32direct_mmap(size_t size) {
1713
void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN,
1714
PAGE_READWRITE);
1715
return (ptr != 0)? ptr: MFAIL;
1716
}
1717
1718
/* This function supports releasing coalesed segments */
1719
SDL_FORCE_INLINE int win32munmap(void* ptr, size_t size) {
1720
MEMORY_BASIC_INFORMATION minfo;
1721
char* cptr = (char*)ptr;
1722
while (size) {
1723
if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0)
1724
return -1;
1725
if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr ||
1726
minfo.State != MEM_COMMIT || minfo.RegionSize > size)
1727
return -1;
1728
if (VirtualFree(cptr, 0, MEM_RELEASE) == 0)
1729
return -1;
1730
cptr += minfo.RegionSize;
1731
size -= minfo.RegionSize;
1732
}
1733
return 0;
1734
}
1735
1736
#define MMAP_DEFAULT(s) win32mmap(s)
1737
#define MUNMAP_DEFAULT(a, s) win32munmap((a), (s))
1738
#define DIRECT_MMAP_DEFAULT(s) win32direct_mmap(s)
1739
#endif /* WIN32 */
1740
#endif /* HAVE_MMAP */
1741
1742
#if HAVE_MREMAP
1743
#ifndef WIN32
1744
#define MREMAP_DEFAULT(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv))
1745
#endif /* WIN32 */
1746
#endif /* HAVE_MREMAP */
1747
1748
/**
1749
* Define CALL_MORECORE
1750
*/
1751
#if HAVE_MORECORE
1752
#ifdef MORECORE
1753
#define CALL_MORECORE(S) MORECORE(S)
1754
#else /* MORECORE */
1755
#define CALL_MORECORE(S) MORECORE_DEFAULT(S)
1756
#endif /* MORECORE */
1757
#else /* HAVE_MORECORE */
1758
#define CALL_MORECORE(S) MFAIL
1759
#endif /* HAVE_MORECORE */
1760
1761
/**
1762
* Define CALL_MMAP/CALL_MUNMAP/CALL_DIRECT_MMAP
1763
*/
1764
#if HAVE_MMAP
1765
#define USE_MMAP_BIT (SIZE_T_ONE)
1766
1767
#ifdef MMAP
1768
#define CALL_MMAP(s) MMAP(s)
1769
#else /* MMAP */
1770
#define CALL_MMAP(s) MMAP_DEFAULT(s)
1771
#endif /* MMAP */
1772
#ifdef MUNMAP
1773
#define CALL_MUNMAP(a, s) MUNMAP((a), (s))
1774
#else /* MUNMAP */
1775
#define CALL_MUNMAP(a, s) MUNMAP_DEFAULT((a), (s))
1776
#endif /* MUNMAP */
1777
#ifdef DIRECT_MMAP
1778
#define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s)
1779
#else /* DIRECT_MMAP */
1780
#define CALL_DIRECT_MMAP(s) DIRECT_MMAP_DEFAULT(s)
1781
#endif /* DIRECT_MMAP */
1782
#else /* HAVE_MMAP */
1783
#define USE_MMAP_BIT (SIZE_T_ZERO)
1784
1785
#define MMAP(s) MFAIL
1786
#define MUNMAP(a, s) (-1)
1787
#define DIRECT_MMAP(s) MFAIL
1788
#define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s)
1789
#define CALL_MMAP(s) MMAP(s)
1790
#define CALL_MUNMAP(a, s) MUNMAP((a), (s))
1791
#endif /* HAVE_MMAP */
1792
1793
/**
1794
* Define CALL_MREMAP
1795
*/
1796
#if HAVE_MMAP && HAVE_MREMAP
1797
#ifdef MREMAP
1798
#define CALL_MREMAP(addr, osz, nsz, mv) MREMAP((addr), (osz), (nsz), (mv))
1799
#else /* MREMAP */
1800
#define CALL_MREMAP(addr, osz, nsz, mv) MREMAP_DEFAULT((addr), (osz), (nsz), (mv))
1801
#endif /* MREMAP */
1802
#else /* HAVE_MMAP && HAVE_MREMAP */
1803
#define CALL_MREMAP(addr, osz, nsz, mv) MFAIL
1804
#endif /* HAVE_MMAP && HAVE_MREMAP */
1805
1806
/* mstate bit set if continguous morecore disabled or failed */
1807
#define USE_NONCONTIGUOUS_BIT (4U)
1808
1809
/* segment bit set in create_mspace_with_base */
1810
#define EXTERN_BIT (8U)
1811
1812
1813
/* --------------------------- Lock preliminaries ------------------------ */
1814
1815
/*
1816
When locks are defined, there is one global lock, plus
1817
one per-mspace lock.
1818
1819
The global lock_ensures that mparams.magic and other unique
1820
mparams values are initialized only once. It also protects
1821
sequences of calls to MORECORE. In many cases sys_alloc requires
1822
two calls, that should not be interleaved with calls by other
1823
threads. This does not protect against direct calls to MORECORE
1824
by other threads not using this lock, so there is still code to
1825
cope the best we can on interference.
1826
1827
Per-mspace locks surround calls to malloc, free, etc.
1828
By default, locks are simple non-reentrant mutexes.
1829
1830
Because lock-protected regions generally have bounded times, it is
1831
OK to use the supplied simple spinlocks. Spinlocks are likely to
1832
improve performance for lightly contended applications, but worsen
1833
performance under heavy contention.
1834
1835
If USE_LOCKS is > 1, the definitions of lock routines here are
1836
bypassed, in which case you will need to define the type MLOCK_T,
1837
and at least INITIAL_LOCK, DESTROY_LOCK, ACQUIRE_LOCK, RELEASE_LOCK
1838
and TRY_LOCK. You must also declare a
1839
static MLOCK_T malloc_global_mutex = { initialization values };.
1840
1841
*/
1842
1843
#if !USE_LOCKS
1844
#define USE_LOCK_BIT (0U)
1845
#define INITIAL_LOCK(l) (0)
1846
#define DESTROY_LOCK(l) (0)
1847
#define ACQUIRE_MALLOC_GLOBAL_LOCK()
1848
#define RELEASE_MALLOC_GLOBAL_LOCK()
1849
1850
#else
1851
#if USE_LOCKS > 1
1852
/* ----------------------- User-defined locks ------------------------ */
1853
/* Define your own lock implementation here */
1854
/* #define INITIAL_LOCK(lk) ... */
1855
/* #define DESTROY_LOCK(lk) ... */
1856
/* #define ACQUIRE_LOCK(lk) ... */
1857
/* #define RELEASE_LOCK(lk) ... */
1858
/* #define TRY_LOCK(lk) ... */
1859
/* static MLOCK_T malloc_global_mutex = ... */
1860
1861
#elif USE_SPIN_LOCKS
1862
1863
/* First, define CAS_LOCK and CLEAR_LOCK on ints */
1864
/* Note CAS_LOCK defined to return 0 on success */
1865
1866
#if defined(__GNUC__)&& (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 1))
1867
#define CAS_LOCK(sl) __sync_lock_test_and_set(sl, 1)
1868
#define CLEAR_LOCK(sl) __sync_lock_release(sl)
1869
1870
#elif (defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)))
1871
/* Custom spin locks for older gcc on x86 */
1872
SDL_FORCE_INLINE int x86_cas_lock(int *sl) {
1873
int ret;
1874
int val = 1;
1875
int cmp = 0;
1876
__asm__ __volatile__ ("lock; cmpxchgl %1, %2"
1877
: "=a" (ret)
1878
: "r" (val), "m" (*(sl)), "0"(cmp)
1879
: "memory", "cc");
1880
return ret;
1881
}
1882
1883
SDL_FORCE_INLINE void x86_clear_lock(int* sl) {
1884
assert(*sl != 0);
1885
int prev = 0;
1886
int ret;
1887
__asm__ __volatile__ ("lock; xchgl %0, %1"
1888
: "=r" (ret)
1889
: "m" (*(sl)), "0"(prev)
1890
: "memory");
1891
}
1892
1893
#define CAS_LOCK(sl) x86_cas_lock(sl)
1894
#define CLEAR_LOCK(sl) x86_clear_lock(sl)
1895
1896
#else /* Win32 MSC */
1897
#define CAS_LOCK(sl) interlockedexchange(sl, (LONG)1)
1898
#define CLEAR_LOCK(sl) interlockedexchange (sl, (LONG)0)
1899
1900
#endif /* ... gcc spins locks ... */
1901
1902
/* How to yield for a spin lock */
1903
#define SPINS_PER_YIELD 63
1904
#if defined(_MSC_VER)
1905
#define SLEEP_EX_DURATION 50 /* delay for yield/sleep */
1906
#define SPIN_LOCK_YIELD SleepEx(SLEEP_EX_DURATION, FALSE)
1907
#elif defined (__SVR4) && defined (__sun) /* solaris */
1908
#define SPIN_LOCK_YIELD thr_yield();
1909
#elif !defined(LACKS_SCHED_H)
1910
#define SPIN_LOCK_YIELD sched_yield();
1911
#else
1912
#define SPIN_LOCK_YIELD
1913
#endif /* ... yield ... */
1914
1915
#if !defined(USE_RECURSIVE_LOCKS) || USE_RECURSIVE_LOCKS == 0
1916
/* Plain spin locks use single word (embedded in malloc_states) */
1917
static int spin_acquire_lock(volatile long *sl) {
1918
int spins = 0;
1919
while (*sl != 0 || CAS_LOCK(sl)) {
1920
if ((++spins & SPINS_PER_YIELD) == 0) {
1921
SPIN_LOCK_YIELD;
1922
}
1923
}
1924
return 0;
1925
}
1926
1927
#define MLOCK_T volatile long
1928
#define TRY_LOCK(sl) !CAS_LOCK(sl)
1929
#define RELEASE_LOCK(sl) CLEAR_LOCK(sl)
1930
#define ACQUIRE_LOCK(sl) (CAS_LOCK(sl)? spin_acquire_lock(sl) : 0)
1931
#define INITIAL_LOCK(sl) (*sl = 0)
1932
#define DESTROY_LOCK(sl) (0)
1933
static MLOCK_T malloc_global_mutex = 0;
1934
1935
#else /* USE_RECURSIVE_LOCKS */
1936
/* types for lock owners */
1937
#ifdef WIN32
1938
#define THREAD_ID_T DWORD
1939
#define CURRENT_THREAD GetCurrentThreadId()
1940
#define EQ_OWNER(X,Y) ((X) == (Y))
1941
#else
1942
/*
1943
Note: the following assume that pthread_t is a type that can be
1944
initialized to (casted) zero. If this is not the case, you will need to
1945
somehow redefine these or not use spin locks.
1946
*/
1947
#define THREAD_ID_T pthread_t
1948
#define CURRENT_THREAD pthread_self()
1949
#define EQ_OWNER(X,Y) pthread_equal(X, Y)
1950
#endif
1951
1952
struct malloc_recursive_lock {
1953
int sl;
1954
unsigned int c;
1955
THREAD_ID_T threadid;
1956
};
1957
1958
#define MLOCK_T struct malloc_recursive_lock
1959
static MLOCK_T malloc_global_mutex = { 0, 0, (THREAD_ID_T)0};
1960
1961
SDL_FORCE_INLINE void recursive_release_lock(MLOCK_T *lk) {
1962
assert(lk->sl != 0);
1963
if (--lk->c == 0) {
1964
CLEAR_LOCK(&lk->sl);
1965
}
1966
}
1967
1968
SDL_FORCE_INLINE int recursive_acquire_lock(MLOCK_T *lk) {
1969
THREAD_ID_T mythreadid = CURRENT_THREAD;
1970
int spins = 0;
1971
for (;;) {
1972
if (*((volatile int *)(&lk->sl)) == 0) {
1973
if (!CAS_LOCK(&lk->sl)) {
1974
lk->threadid = mythreadid;
1975
lk->c = 1;
1976
return 0;
1977
}
1978
}
1979
else if (EQ_OWNER(lk->threadid, mythreadid)) {
1980
++lk->c;
1981
return 0;
1982
}
1983
if ((++spins & SPINS_PER_YIELD) == 0) {
1984
SPIN_LOCK_YIELD;
1985
}
1986
}
1987
}
1988
1989
SDL_FORCE_INLINE int recursive_try_lock(MLOCK_T *lk) {
1990
THREAD_ID_T mythreadid = CURRENT_THREAD;
1991
if (*((volatile int *)(&lk->sl)) == 0) {
1992
if (!CAS_LOCK(&lk->sl)) {
1993
lk->threadid = mythreadid;
1994
lk->c = 1;
1995
return 1;
1996
}
1997
}
1998
else if (EQ_OWNER(lk->threadid, mythreadid)) {
1999
++lk->c;
2000
return 1;
2001
}
2002
return 0;
2003
}
2004
2005
#define RELEASE_LOCK(lk) recursive_release_lock(lk)
2006
#define TRY_LOCK(lk) recursive_try_lock(lk)
2007
#define ACQUIRE_LOCK(lk) recursive_acquire_lock(lk)
2008
#define INITIAL_LOCK(lk) ((lk)->threadid = (THREAD_ID_T)0, (lk)->sl = 0, (lk)->c = 0)
2009
#define DESTROY_LOCK(lk) (0)
2010
#endif /* USE_RECURSIVE_LOCKS */
2011
2012
#elif defined(WIN32) /* Win32 critical sections */
2013
#define MLOCK_T CRITICAL_SECTION
2014
#define ACQUIRE_LOCK(lk) (EnterCriticalSection(lk), 0)
2015
#define RELEASE_LOCK(lk) LeaveCriticalSection(lk)
2016
#define TRY_LOCK(lk) TryEnterCriticalSection(lk)
2017
#define INITIAL_LOCK(lk) (!InitializeCriticalSectionAndSpinCount((lk), 0x80000000|4000))
2018
#define DESTROY_LOCK(lk) (DeleteCriticalSection(lk), 0)
2019
#define NEED_GLOBAL_LOCK_INIT
2020
2021
static MLOCK_T malloc_global_mutex;
2022
static volatile LONG malloc_global_mutex_status;
2023
2024
/* Use spin loop to initialize global lock */
2025
static void init_malloc_global_mutex() {
2026
for (;;) {
2027
long stat = malloc_global_mutex_status;
2028
if (stat > 0)
2029
return;
2030
/* transition to < 0 while initializing, then to > 0) */
2031
if (stat == 0 &&
2032
interlockedcompareexchange(&malloc_global_mutex_status, (LONG)-1, (LONG)0) == 0) {
2033
InitializeCriticalSection(&malloc_global_mutex);
2034
interlockedexchange(&malloc_global_mutex_status, (LONG)1);
2035
return;
2036
}
2037
SleepEx(0, FALSE);
2038
}
2039
}
2040
2041
#else /* pthreads-based locks */
2042
#define MLOCK_T pthread_mutex_t
2043
#define ACQUIRE_LOCK(lk) pthread_mutex_lock(lk)
2044
#define RELEASE_LOCK(lk) pthread_mutex_unlock(lk)
2045
#define TRY_LOCK(lk) (!pthread_mutex_trylock(lk))
2046
#define INITIAL_LOCK(lk) pthread_init_lock(lk)
2047
#define DESTROY_LOCK(lk) pthread_mutex_destroy(lk)
2048
2049
#if defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0 && defined(linux) && !defined(PTHREAD_MUTEX_RECURSIVE)
2050
/* Cope with old-style linux recursive lock initialization by adding */
2051
/* skipped internal declaration from pthread.h */
2052
extern int pthread_mutexattr_setkind_np __P ((pthread_mutexattr_t *__attr,
2053
int __kind));
2054
#define PTHREAD_MUTEX_RECURSIVE PTHREAD_MUTEX_RECURSIVE_NP
2055
#define pthread_mutexattr_settype(x,y) pthread_mutexattr_setkind_np(x,y)
2056
#endif /* USE_RECURSIVE_LOCKS ... */
2057
2058
static MLOCK_T malloc_global_mutex = PTHREAD_MUTEX_INITIALIZER;
2059
2060
static int pthread_init_lock (MLOCK_T *lk) {
2061
pthread_mutexattr_t attr;
2062
if (pthread_mutexattr_init(&attr)) return 1;
2063
#if defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0
2064
if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) return 1;
2065
#endif
2066
if (pthread_mutex_init(lk, &attr)) return 1;
2067
if (pthread_mutexattr_destroy(&attr)) return 1;
2068
return 0;
2069
}
2070
2071
#endif /* ... lock types ... */
2072
2073
/* Common code for all lock types */
2074
#define USE_LOCK_BIT (2U)
2075
2076
#ifndef ACQUIRE_MALLOC_GLOBAL_LOCK
2077
#define ACQUIRE_MALLOC_GLOBAL_LOCK() ACQUIRE_LOCK(&malloc_global_mutex);
2078
#endif
2079
2080
#ifndef RELEASE_MALLOC_GLOBAL_LOCK
2081
#define RELEASE_MALLOC_GLOBAL_LOCK() RELEASE_LOCK(&malloc_global_mutex);
2082
#endif
2083
2084
#endif /* USE_LOCKS */
2085
2086
/* ----------------------- Chunk representations ------------------------ */
2087
2088
/*
2089
(The following includes lightly edited explanations by Colin Plumb.)
2090
2091
The malloc_chunk declaration below is misleading (but accurate and
2092
necessary). It declares a "view" into memory allowing access to
2093
necessary fields at known offsets from a given base.
2094
2095
Chunks of memory are maintained using a `boundary tag' method as
2096
originally described by Knuth. (See the paper by Paul Wilson
2097
ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such
2098
techniques.) Sizes of free chunks are stored both in the front of
2099
each chunk and at the end. This makes consolidating fragmented
2100
chunks into bigger chunks fast. The head fields also hold bits
2101
representing whether chunks are free or in use.
2102
2103
Here are some pictures to make it clearer. They are "exploded" to
2104
show that the state of a chunk can be thought of as extending from
2105
the high 31 bits of the head field of its header through the
2106
prev_foot and PINUSE_BIT bit of the following chunk header.
2107
2108
A chunk that's in use looks like:
2109
2110
chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2111
| Size of previous chunk (if P = 0) |
2112
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2113
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
2114
| Size of this chunk 1| +-+
2115
mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2116
| |
2117
+- -+
2118
| |
2119
+- -+
2120
| :
2121
+- size - sizeof(size_t) available payload bytes -+
2122
: |
2123
chunk-> +- -+
2124
| |
2125
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2126
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|
2127
| Size of next chunk (may or may not be in use) | +-+
2128
mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2129
2130
And if it's free, it looks like this:
2131
2132
chunk-> +- -+
2133
| User payload (must be in use, or we would have merged!) |
2134
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2135
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
2136
| Size of this chunk 0| +-+
2137
mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2138
| Next pointer |
2139
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2140
| Prev pointer |
2141
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2142
| :
2143
+- size - sizeof(struct chunk) unused bytes -+
2144
: |
2145
chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2146
| Size of this chunk |
2147
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2148
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0|
2149
| Size of next chunk (must be in use, or we would have merged)| +-+
2150
mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2151
| :
2152
+- User payload -+
2153
: |
2154
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2155
|0|
2156
+-+
2157
Note that since we always merge adjacent free chunks, the chunks
2158
adjacent to a free chunk must be in use.
2159
2160
Given a pointer to a chunk (which can be derived trivially from the
2161
payload pointer) we can, in O(1) time, find out whether the adjacent
2162
chunks are free, and if so, unlink them from the lists that they
2163
are on and merge them with the current chunk.
2164
2165
Chunks always begin on even word boundaries, so the mem portion
2166
(which is returned to the user) is also on an even word boundary, and
2167
thus at least double-word aligned.
2168
2169
The P (PINUSE_BIT) bit, stored in the unused low-order bit of the
2170
chunk size (which is always a multiple of two words), is an in-use
2171
bit for the *previous* chunk. If that bit is *clear*, then the
2172
word before the current chunk size contains the previous chunk
2173
size, and can be used to find the front of the previous chunk.
2174
The very first chunk allocated always has this bit set, preventing
2175
access to non-existent (or non-owned) memory. If pinuse is set for
2176
any given chunk, then you CANNOT determine the size of the
2177
previous chunk, and might even get a memory addressing fault when
2178
trying to do so.
2179
2180
The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of
2181
the chunk size redundantly records whether the current chunk is
2182
inuse (unless the chunk is mmapped). This redundancy enables usage
2183
checks within free and realloc, and reduces indirection when freeing
2184
and consolidating chunks.
2185
2186
Each freshly allocated chunk must have both cinuse and pinuse set.
2187
That is, each allocated chunk borders either a previously allocated
2188
and still in-use chunk, or the base of its memory arena. This is
2189
ensured by making all allocations from the `lowest' part of any
2190
found chunk. Further, no free chunk physically borders another one,
2191
so each free chunk is known to be preceded and followed by either
2192
inuse chunks or the ends of memory.
2193
2194
Note that the `foot' of the current chunk is actually represented
2195
as the prev_foot of the NEXT chunk. This makes it easier to
2196
deal with alignments etc but can be very confusing when trying
2197
to extend or adapt this code.
2198
2199
The exceptions to all this are
2200
2201
1. The special chunk `top' is the top-most available chunk (i.e.,
2202
the one bordering the end of available memory). It is treated
2203
specially. Top is never included in any bin, is used only if
2204
no other chunk is available, and is released back to the
2205
system if it is very large (see M_TRIM_THRESHOLD). In effect,
2206
the top chunk is treated as larger (and thus less well
2207
fitting) than any other available chunk. The top chunk
2208
doesn't update its trailing size field since there is no next
2209
contiguous chunk that would have to index off it. However,
2210
space is still allocated for it (TOP_FOOT_SIZE) to enable
2211
separation or merging when space is extended.
2212
2213
3. Chunks allocated via mmap, have both cinuse and pinuse bits
2214
cleared in their head fields. Because they are allocated
2215
one-by-one, each must carry its own prev_foot field, which is
2216
also used to hold the offset this chunk has within its mmapped
2217
region, which is needed to preserve alignment. Each mmapped
2218
chunk is trailed by the first two fields of a fake next-chunk
2219
for sake of usage checks.
2220
2221
*/
2222
2223
struct malloc_chunk {
2224
size_t prev_foot; /* Size of previous chunk (if free). */
2225
size_t head; /* Size and inuse bits. */
2226
struct malloc_chunk* fd; /* double links -- used only if free. */
2227
struct malloc_chunk* bk;
2228
};
2229
2230
typedef struct malloc_chunk mchunk;
2231
typedef struct malloc_chunk* mchunkptr;
2232
typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */
2233
typedef unsigned int bindex_t; /* Described below */
2234
typedef unsigned int binmap_t; /* Described below */
2235
typedef unsigned int flag_t; /* The type of various bit flag sets */
2236
2237
/* ------------------- Chunks sizes and alignments ----------------------- */
2238
2239
#define MCHUNK_SIZE (sizeof(mchunk))
2240
2241
#if FOOTERS
2242
#define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
2243
#else /* FOOTERS */
2244
#define CHUNK_OVERHEAD (SIZE_T_SIZE)
2245
#endif /* FOOTERS */
2246
2247
/* MMapped chunks need a second word of overhead ... */
2248
#define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
2249
/* ... and additional padding for fake next-chunk at foot */
2250
#define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES)
2251
2252
/* The smallest size we can malloc is an aligned minimal chunk */
2253
#define MIN_CHUNK_SIZE\
2254
((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
2255
2256
/* conversion from malloc headers to user pointers, and back */
2257
#define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES))
2258
#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES))
2259
/* chunk associated with aligned address A */
2260
#define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A)))
2261
2262
/* Bounds on request (not chunk) sizes. */
2263
#define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2)
2264
#define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
2265
2266
/* pad request bytes into a usable size */
2267
#define pad_request(req) \
2268
(((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
2269
2270
/* pad request, checking for minimum (but not maximum) */
2271
#define request2size(req) \
2272
(((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
2273
2274
2275
/* ------------------ Operations on head and foot fields ----------------- */
2276
2277
/*
2278
The head field of a chunk is or'ed with PINUSE_BIT when previous
2279
adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in
2280
use, unless mmapped, in which case both bits are cleared.
2281
2282
FLAG4_BIT is not used by this malloc, but might be useful in extensions.
2283
*/
2284
2285
#define PINUSE_BIT (SIZE_T_ONE)
2286
#define CINUSE_BIT (SIZE_T_TWO)
2287
#define FLAG4_BIT (SIZE_T_FOUR)
2288
#define INUSE_BITS (PINUSE_BIT|CINUSE_BIT)
2289
#define FLAG_BITS (PINUSE_BIT|CINUSE_BIT|FLAG4_BIT)
2290
2291
/* Head value for fenceposts */
2292
#define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE)
2293
2294
/* extraction of fields from head words */
2295
#define cinuse(p) ((p)->head & CINUSE_BIT)
2296
#define pinuse(p) ((p)->head & PINUSE_BIT)
2297
#define flag4inuse(p) ((p)->head & FLAG4_BIT)
2298
#define is_inuse(p) (((p)->head & INUSE_BITS) != PINUSE_BIT)
2299
#define is_mmapped(p) (((p)->head & INUSE_BITS) == 0)
2300
2301
#define chunksize(p) ((p)->head & ~(FLAG_BITS))
2302
2303
#define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT)
2304
#define set_flag4(p) ((p)->head |= FLAG4_BIT)
2305
#define clear_flag4(p) ((p)->head &= ~FLAG4_BIT)
2306
2307
/* Treat space at ptr +/- offset as a chunk */
2308
#define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
2309
#define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s)))
2310
2311
/* Ptr to next or previous physical malloc_chunk. */
2312
#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~FLAG_BITS)))
2313
#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) ))
2314
2315
/* extract next chunk's pinuse bit */
2316
#define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT)
2317
2318
/* Get/set size at footer */
2319
#define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot)
2320
#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s))
2321
2322
/* Set size, pinuse bit, and foot */
2323
#define set_size_and_pinuse_of_free_chunk(p, s)\
2324
((p)->head = (s|PINUSE_BIT), set_foot(p, s))
2325
2326
/* Set size, pinuse bit, foot, and clear next pinuse */
2327
#define set_free_with_pinuse(p, s, n)\
2328
(clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
2329
2330
/* Get the internal overhead associated with chunk p */
2331
#define overhead_for(p)\
2332
(is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD)
2333
2334
/* Return true if malloced space is not necessarily cleared */
2335
#if MMAP_CLEARS
2336
#define calloc_must_clear(p) (!is_mmapped(p))
2337
#else /* MMAP_CLEARS */
2338
#define calloc_must_clear(p) (1)
2339
#endif /* MMAP_CLEARS */
2340
2341
/* ---------------------- Overlaid data structures ----------------------- */
2342
2343
/*
2344
When chunks are not in use, they are treated as nodes of either
2345
lists or trees.
2346
2347
"Small" chunks are stored in circular doubly-linked lists, and look
2348
like this:
2349
2350
chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2351
| Size of previous chunk |
2352
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2353
`head:' | Size of chunk, in bytes |P|
2354
mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2355
| Forward pointer to next chunk in list |
2356
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2357
| Back pointer to previous chunk in list |
2358
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2359
| Unused space (may be 0 bytes long) .
2360
. .
2361
. |
2362
nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2363
`foot:' | Size of chunk, in bytes |
2364
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2365
2366
Larger chunks are kept in a form of bitwise digital trees (aka
2367
tries) keyed on chunksizes. Because malloc_tree_chunks are only for
2368
free chunks greater than 256 bytes, their size doesn't impose any
2369
constraints on user chunk sizes. Each node looks like:
2370
2371
chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2372
| Size of previous chunk |
2373
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2374
`head:' | Size of chunk, in bytes |P|
2375
mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2376
| Forward pointer to next chunk of same size |
2377
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2378
| Back pointer to previous chunk of same size |
2379
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2380
| Pointer to left child (child[0]) |
2381
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2382
| Pointer to right child (child[1]) |
2383
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2384
| Pointer to parent |
2385
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2386
| bin index of this chunk |
2387
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2388
| Unused space .
2389
. |
2390
nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2391
`foot:' | Size of chunk, in bytes |
2392
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2393
2394
Each tree holding treenodes is a tree of unique chunk sizes. Chunks
2395
of the same size are arranged in a circularly-linked list, with only
2396
the oldest chunk (the next to be used, in our FIFO ordering)
2397
actually in the tree. (Tree members are distinguished by a non-null
2398
parent pointer.) If a chunk with the same size an an existing node
2399
is inserted, it is linked off the existing node using pointers that
2400
work in the same way as fd/bk pointers of small chunks.
2401
2402
Each tree contains a power of 2 sized range of chunk sizes (the
2403
smallest is 0x100 <= x < 0x180), which is is divided in half at each
2404
tree level, with the chunks in the smaller half of the range (0x100
2405
<= x < 0x140 for the top nose) in the left subtree and the larger
2406
half (0x140 <= x < 0x180) in the right subtree. This is, of course,
2407
done by inspecting individual bits.
2408
2409
Using these rules, each node's left subtree contains all smaller
2410
sizes than its right subtree. However, the node at the root of each
2411
subtree has no particular ordering relationship to either. (The
2412
dividing line between the subtree sizes is based on trie relation.)
2413
If we remove the last chunk of a given size from the interior of the
2414
tree, we need to replace it with a leaf node. The tree ordering
2415
rules permit a node to be replaced by any leaf below it.
2416
2417
The smallest chunk in a tree (a common operation in a best-fit
2418
allocator) can be found by walking a path to the leftmost leaf in
2419
the tree. Unlike a usual binary tree, where we follow left child
2420
pointers until we reach a null, here we follow the right child
2421
pointer any time the left one is null, until we reach a leaf with
2422
both child pointers null. The smallest chunk in the tree will be
2423
somewhere along that path.
2424
2425
The worst case number of steps to add, find, or remove a node is
2426
bounded by the number of bits differentiating chunks within
2427
bins. Under current bin calculations, this ranges from 6 up to 21
2428
(for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case
2429
is of course much better.
2430
*/
2431
2432
struct malloc_tree_chunk {
2433
/* The first four fields must be compatible with malloc_chunk */
2434
size_t prev_foot;
2435
size_t head;
2436
struct malloc_tree_chunk* fd;
2437
struct malloc_tree_chunk* bk;
2438
2439
struct malloc_tree_chunk* child[2];
2440
struct malloc_tree_chunk* parent;
2441
bindex_t index;
2442
};
2443
2444
typedef struct malloc_tree_chunk tchunk;
2445
typedef struct malloc_tree_chunk* tchunkptr;
2446
typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */
2447
2448
/* A little helper macro for trees */
2449
#define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
2450
2451
/* ----------------------------- Segments -------------------------------- */
2452
2453
/*
2454
Each malloc space may include non-contiguous segments, held in a
2455
list headed by an embedded malloc_segment record representing the
2456
top-most space. Segments also include flags holding properties of
2457
the space. Large chunks that are directly allocated by mmap are not
2458
included in this list. They are instead independently created and
2459
destroyed without otherwise keeping track of them.
2460
2461
Segment management mainly comes into play for spaces allocated by
2462
MMAP. Any call to MMAP might or might not return memory that is
2463
adjacent to an existing segment. MORECORE normally contiguously
2464
extends the current space, so this space is almost always adjacent,
2465
which is simpler and faster to deal with. (This is why MORECORE is
2466
used preferentially to MMAP when both are available -- see
2467
sys_alloc.) When allocating using MMAP, we don't use any of the
2468
hinting mechanisms (inconsistently) supported in various
2469
implementations of unix mmap, or distinguish reserving from
2470
committing memory. Instead, we just ask for space, and exploit
2471
contiguity when we get it. It is probably possible to do
2472
better than this on some systems, but no general scheme seems
2473
to be significantly better.
2474
2475
Management entails a simpler variant of the consolidation scheme
2476
used for chunks to reduce fragmentation -- new adjacent memory is
2477
normally prepended or appended to an existing segment. However,
2478
there are limitations compared to chunk consolidation that mostly
2479
reflect the fact that segment processing is relatively infrequent
2480
(occurring only when getting memory from system) and that we
2481
don't expect to have huge numbers of segments:
2482
2483
* Segments are not indexed, so traversal requires linear scans. (It
2484
would be possible to index these, but is not worth the extra
2485
overhead and complexity for most programs on most platforms.)
2486
* New segments are only appended to old ones when holding top-most
2487
memory; if they cannot be prepended to others, they are held in
2488
different segments.
2489
2490
Except for the top-most segment of an mstate, each segment record
2491
is kept at the tail of its segment. Segments are added by pushing
2492
segment records onto the list headed by &mstate.seg for the
2493
containing mstate.
2494
2495
Segment flags control allocation/merge/deallocation policies:
2496
* If EXTERN_BIT set, then we did not allocate this segment,
2497
and so should not try to deallocate or merge with others.
2498
(This currently holds only for the initial segment passed
2499
into create_mspace_with_base.)
2500
* If USE_MMAP_BIT set, the segment may be merged with
2501
other surrounding mmapped segments and trimmed/de-allocated
2502
using munmap.
2503
* If neither bit is set, then the segment was obtained using
2504
MORECORE so can be merged with surrounding MORECORE'd segments
2505
and deallocated/trimmed using MORECORE with negative arguments.
2506
*/
2507
2508
struct malloc_segment {
2509
char* base; /* base address */
2510
size_t size; /* allocated size */
2511
struct malloc_segment* next; /* ptr to next segment */
2512
flag_t sflags; /* mmap and extern flag */
2513
};
2514
2515
#define is_mmapped_segment(S) ((S)->sflags & USE_MMAP_BIT)
2516
#define is_extern_segment(S) ((S)->sflags & EXTERN_BIT)
2517
2518
typedef struct malloc_segment msegment;
2519
typedef struct malloc_segment* msegmentptr;
2520
2521
/* ---------------------------- malloc_state ----------------------------- */
2522
2523
/*
2524
A malloc_state holds all of the bookkeeping for a space.
2525
The main fields are:
2526
2527
Top
2528
The topmost chunk of the currently active segment. Its size is
2529
cached in topsize. The actual size of topmost space is
2530
topsize+TOP_FOOT_SIZE, which includes space reserved for adding
2531
fenceposts and segment records if necessary when getting more
2532
space from the system. The size at which to autotrim top is
2533
cached from mparams in trim_check, except that it is disabled if
2534
an autotrim fails.
2535
2536
Designated victim (dv)
2537
This is the preferred chunk for servicing small requests that
2538
don't have exact fits. It is normally the chunk split off most
2539
recently to service another small request. Its size is cached in
2540
dvsize. The link fields of this chunk are not maintained since it
2541
is not kept in a bin.
2542
2543
SmallBins
2544
An array of bin headers for free chunks. These bins hold chunks
2545
with sizes less than MIN_LARGE_SIZE bytes. Each bin contains
2546
chunks of all the same size, spaced 8 bytes apart. To simplify
2547
use in double-linked lists, each bin header acts as a malloc_chunk
2548
pointing to the real first node, if it exists (else pointing to
2549
itself). This avoids special-casing for headers. But to avoid
2550
waste, we allocate only the fd/bk pointers of bins, and then use
2551
repositioning tricks to treat these as the fields of a chunk.
2552
2553
TreeBins
2554
Treebins are pointers to the roots of trees holding a range of
2555
sizes. There are 2 equally spaced treebins for each power of two
2556
from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything
2557
larger.
2558
2559
Bin maps
2560
There is one bit map for small bins ("smallmap") and one for
2561
treebins ("treemap). Each bin sets its bit when non-empty, and
2562
clears the bit when empty. Bit operations are then used to avoid
2563
bin-by-bin searching -- nearly all "search" is done without ever
2564
looking at bins that won't be selected. The bit maps
2565
conservatively use 32 bits per map word, even if on 64bit system.
2566
For a good description of some of the bit-based techniques used
2567
here, see Henry S. Warren Jr's book "Hacker's Delight" (and
2568
supplement at http://hackersdelight.org/). Many of these are
2569
intended to reduce the branchiness of paths through malloc etc, as
2570
well as to reduce the number of memory locations read or written.
2571
2572
Segments
2573
A list of segments headed by an embedded malloc_segment record
2574
representing the initial space.
2575
2576
Address check support
2577
The least_addr field is the least address ever obtained from
2578
MORECORE or MMAP. Attempted frees and reallocs of any address less
2579
than this are trapped (unless INSECURE is defined).
2580
2581
Magic tag
2582
A cross-check field that should always hold same value as mparams.magic.
2583
2584
Max allowed footprint
2585
The maximum allowed bytes to allocate from system (zero means no limit)
2586
2587
Flags
2588
Bits recording whether to use MMAP, locks, or contiguous MORECORE
2589
2590
Statistics
2591
Each space keeps track of current and maximum system memory
2592
obtained via MORECORE or MMAP.
2593
2594
Trim support
2595
Fields holding the amount of unused topmost memory that should trigger
2596
trimming, and a counter to force periodic scanning to release unused
2597
non-topmost segments.
2598
2599
Locking
2600
If USE_LOCKS is defined, the "mutex" lock is acquired and released
2601
around every public call using this mspace.
2602
2603
Extension support
2604
A void* pointer and a size_t field that can be used to help implement
2605
extensions to this malloc.
2606
*/
2607
2608
/* Bin types, widths and sizes */
2609
#define NSMALLBINS (32U)
2610
#define NTREEBINS (32U)
2611
#define SMALLBIN_SHIFT (3U)
2612
#define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT)
2613
#define TREEBIN_SHIFT (8U)
2614
#define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT)
2615
#define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE)
2616
#define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
2617
2618
struct malloc_state {
2619
binmap_t smallmap;
2620
binmap_t treemap;
2621
size_t dvsize;
2622
size_t topsize;
2623
char* least_addr;
2624
mchunkptr dv;
2625
mchunkptr top;
2626
size_t trim_check;
2627
size_t release_checks;
2628
size_t magic;
2629
mchunkptr smallbins[(NSMALLBINS+1)*2];
2630
tbinptr treebins[NTREEBINS];
2631
size_t footprint;
2632
size_t max_footprint;
2633
size_t footprint_limit; /* zero means no limit */
2634
flag_t mflags;
2635
#if USE_LOCKS
2636
MLOCK_T mutex; /* locate lock among fields that rarely change */
2637
#endif /* USE_LOCKS */
2638
msegment seg;
2639
void* extp; /* Unused but available for extensions */
2640
size_t exts;
2641
};
2642
2643
typedef struct malloc_state* mstate;
2644
2645
/* ------------- Global malloc_state and malloc_params ------------------- */
2646
2647
/*
2648
malloc_params holds global properties, including those that can be
2649
dynamically set using mallopt. There is a single instance, mparams,
2650
initialized in init_mparams. Note that the non-zeroness of "magic"
2651
also serves as an initialization flag.
2652
*/
2653
2654
struct malloc_params {
2655
size_t magic;
2656
size_t page_size;
2657
size_t granularity;
2658
size_t mmap_threshold;
2659
size_t trim_threshold;
2660
flag_t default_mflags;
2661
};
2662
2663
static struct malloc_params mparams;
2664
2665
/* Ensure mparams initialized */
2666
#define ensure_initialization() (void)(mparams.magic != 0 || init_mparams())
2667
2668
#if !ONLY_MSPACES
2669
2670
/* The global malloc_state used for all non-"mspace" calls */
2671
static struct malloc_state _gm_;
2672
#define gm (&_gm_)
2673
#define is_global(M) ((M) == &_gm_)
2674
2675
#endif /* !ONLY_MSPACES */
2676
2677
#define is_initialized(M) ((M)->top != 0)
2678
2679
/* -------------------------- system alloc setup ------------------------- */
2680
2681
/* Operations on mflags */
2682
2683
#define use_lock(M) ((M)->mflags & USE_LOCK_BIT)
2684
#define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT)
2685
#if USE_LOCKS
2686
#define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT)
2687
#else
2688
#define disable_lock(M)
2689
#endif
2690
2691
#define use_mmap(M) ((M)->mflags & USE_MMAP_BIT)
2692
#define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT)
2693
#if HAVE_MMAP
2694
#define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT)
2695
#else
2696
#define disable_mmap(M)
2697
#endif
2698
2699
#define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT)
2700
#define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT)
2701
2702
#define set_lock(M,L)\
2703
((M)->mflags = (L)?\
2704
((M)->mflags | USE_LOCK_BIT) :\
2705
((M)->mflags & ~USE_LOCK_BIT))
2706
2707
/* page-align a size */
2708
#define page_align(S)\
2709
(((S) + (mparams.page_size - SIZE_T_ONE)) & ~(mparams.page_size - SIZE_T_ONE))
2710
2711
/* granularity-align a size */
2712
#define granularity_align(S)\
2713
(((S) + (mparams.granularity - SIZE_T_ONE))\
2714
& ~(mparams.granularity - SIZE_T_ONE))
2715
2716
2717
/* For mmap, use granularity alignment on windows, else page-align */
2718
#ifdef WIN32
2719
#define mmap_align(S) granularity_align(S)
2720
#else
2721
#define mmap_align(S) page_align(S)
2722
#endif
2723
2724
/* For sys_alloc, enough padding to ensure can malloc request on success */
2725
#define SYS_ALLOC_PADDING (TOP_FOOT_SIZE + MALLOC_ALIGNMENT)
2726
2727
#define is_page_aligned(S)\
2728
(((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0)
2729
#define is_granularity_aligned(S)\
2730
(((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0)
2731
2732
/* True if segment S holds address A */
2733
#define segment_holds(S, A)\
2734
((char*)(A) >= S->base && (char*)(A) < S->base + S->size)
2735
2736
/* Return segment holding given address */
2737
static msegmentptr segment_holding(mstate m, char* addr) {
2738
msegmentptr sp = &m->seg;
2739
for (;;) {
2740
if (addr >= sp->base && addr < sp->base + sp->size)
2741
return sp;
2742
if ((sp = sp->next) == 0)
2743
return 0;
2744
}
2745
}
2746
2747
/* Return true if segment contains a segment link */
2748
static int has_segment_link(mstate m, msegmentptr ss) {
2749
msegmentptr sp = &m->seg;
2750
for (;;) {
2751
if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size)
2752
return 1;
2753
if ((sp = sp->next) == 0)
2754
return 0;
2755
}
2756
}
2757
2758
#ifndef MORECORE_CANNOT_TRIM
2759
#define should_trim(M,s) ((s) > (M)->trim_check)
2760
#else /* MORECORE_CANNOT_TRIM */
2761
#define should_trim(M,s) (0)
2762
#endif /* MORECORE_CANNOT_TRIM */
2763
2764
/*
2765
TOP_FOOT_SIZE is padding at the end of a segment, including space
2766
that may be needed to place segment records and fenceposts when new
2767
noncontiguous segments are added.
2768
*/
2769
#define TOP_FOOT_SIZE\
2770
(align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
2771
2772
2773
/* ------------------------------- Hooks -------------------------------- */
2774
2775
/*
2776
PREACTION should be defined to return 0 on success, and nonzero on
2777
failure. If you are not using locking, you can redefine these to do
2778
anything you like.
2779
*/
2780
2781
#if USE_LOCKS
2782
#define PREACTION(M) ((use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0)
2783
#define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); }
2784
#else /* USE_LOCKS */
2785
2786
#ifndef PREACTION
2787
#define PREACTION(M) (0)
2788
#endif /* PREACTION */
2789
2790
#ifndef POSTACTION
2791
#define POSTACTION(M)
2792
#endif /* POSTACTION */
2793
2794
#endif /* USE_LOCKS */
2795
2796
/*
2797
CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses.
2798
USAGE_ERROR_ACTION is triggered on detected bad frees and
2799
reallocs. The argument p is an address that might have triggered the
2800
fault. It is ignored by the two predefined actions, but might be
2801
useful in custom actions that try to help diagnose errors.
2802
*/
2803
2804
#if PROCEED_ON_ERROR
2805
2806
/* A count of the number of corruption errors causing resets */
2807
int malloc_corruption_error_count;
2808
2809
/* default corruption action */
2810
static void reset_on_error(mstate m);
2811
2812
#define CORRUPTION_ERROR_ACTION(m) reset_on_error(m)
2813
#define USAGE_ERROR_ACTION(m, p)
2814
2815
#else /* PROCEED_ON_ERROR */
2816
2817
#ifndef CORRUPTION_ERROR_ACTION
2818
#define CORRUPTION_ERROR_ACTION(m) ABORT
2819
#endif /* CORRUPTION_ERROR_ACTION */
2820
2821
#ifndef USAGE_ERROR_ACTION
2822
#define USAGE_ERROR_ACTION(m,p) ABORT
2823
#endif /* USAGE_ERROR_ACTION */
2824
2825
#endif /* PROCEED_ON_ERROR */
2826
2827
2828
/* -------------------------- Debugging setup ---------------------------- */
2829
2830
#if ! DEBUG
2831
2832
#define check_free_chunk(M,P)
2833
#define check_inuse_chunk(M,P)
2834
#define check_malloced_chunk(M,P,N)
2835
#define check_mmapped_chunk(M,P)
2836
#define check_malloc_state(M)
2837
#define check_top_chunk(M,P)
2838
2839
#else /* DEBUG */
2840
#define check_free_chunk(M,P) do_check_free_chunk(M,P)
2841
#define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P)
2842
#define check_top_chunk(M,P) do_check_top_chunk(M,P)
2843
#define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N)
2844
#define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P)
2845
#define check_malloc_state(M) do_check_malloc_state(M)
2846
2847
static void do_check_any_chunk(mstate m, mchunkptr p);
2848
static void do_check_top_chunk(mstate m, mchunkptr p);
2849
static void do_check_mmapped_chunk(mstate m, mchunkptr p);
2850
static void do_check_inuse_chunk(mstate m, mchunkptr p);
2851
static void do_check_free_chunk(mstate m, mchunkptr p);
2852
static void do_check_malloced_chunk(mstate m, void* mem, size_t s);
2853
static void do_check_tree(mstate m, tchunkptr t);
2854
static void do_check_treebin(mstate m, bindex_t i);
2855
static void do_check_smallbin(mstate m, bindex_t i);
2856
static void do_check_malloc_state(mstate m);
2857
static int bin_find(mstate m, mchunkptr x);
2858
static size_t traverse_and_check(mstate m);
2859
#endif /* DEBUG */
2860
2861
/* ---------------------------- Indexing Bins ---------------------------- */
2862
2863
#define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
2864
#define small_index(s) (bindex_t)((s) >> SMALLBIN_SHIFT)
2865
#define small_index2size(i) ((i) << SMALLBIN_SHIFT)
2866
#define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE))
2867
2868
/* addressing by index. See above about smallbin repositioning */
2869
#define smallbin_at(M, i) ((sbinptr)((char*)&((M)->smallbins[(i)<<1])))
2870
#define treebin_at(M,i) (&((M)->treebins[i]))
2871
2872
/* assign tree index for size S to variable I. Use x86 asm if possible */
2873
#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
2874
#define compute_tree_index(S, I)\
2875
{\
2876
unsigned int X = S >> TREEBIN_SHIFT;\
2877
if (X == 0)\
2878
I = 0;\
2879
else if (X > 0xFFFF)\
2880
I = NTREEBINS-1;\
2881
else {\
2882
unsigned int K = (unsigned) sizeof(X)*__CHAR_BIT__ - 1 - (unsigned) __builtin_clz(X); \
2883
I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
2884
}\
2885
}
2886
2887
#elif defined (__INTEL_COMPILER)
2888
#define compute_tree_index(S, I)\
2889
{\
2890
size_t X = S >> TREEBIN_SHIFT;\
2891
if (X == 0)\
2892
I = 0;\
2893
else if (X > 0xFFFF)\
2894
I = NTREEBINS-1;\
2895
else {\
2896
unsigned int K = _bit_scan_reverse (X); \
2897
I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
2898
}\
2899
}
2900
2901
#elif defined(_MSC_VER) && _MSC_VER>=1300
2902
#define compute_tree_index(S, I)\
2903
{\
2904
size_t X = S >> TREEBIN_SHIFT;\
2905
if (X == 0)\
2906
I = 0;\
2907
else if (X > 0xFFFF)\
2908
I = NTREEBINS-1;\
2909
else {\
2910
unsigned int K;\
2911
_BitScanReverse((DWORD *) &K, (DWORD) X);\
2912
I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
2913
}\
2914
}
2915
2916
#else /* GNUC */
2917
#define compute_tree_index(S, I)\
2918
{\
2919
size_t X = S >> TREEBIN_SHIFT;\
2920
if (X == 0)\
2921
I = 0;\
2922
else if (X > 0xFFFF)\
2923
I = NTREEBINS-1;\
2924
else {\
2925
unsigned int Y = (unsigned int)X;\
2926
unsigned int N = ((Y - 0x100) >> 16) & 8;\
2927
unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\
2928
N += K;\
2929
N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\
2930
K = 14 - N + ((Y <<= K) >> 15);\
2931
I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\
2932
}\
2933
}
2934
#endif /* GNUC */
2935
2936
/* Bit representing maximum resolved size in a treebin at i */
2937
#define bit_for_tree_index(i) \
2938
(i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
2939
2940
/* Shift placing maximum resolved bit in a treebin at i as sign bit */
2941
#define leftshift_for_tree_index(i) \
2942
((i == NTREEBINS-1)? 0 : \
2943
((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
2944
2945
/* The size of the smallest chunk held in bin with index i */
2946
#define minsize_for_tree_index(i) \
2947
((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \
2948
(((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
2949
2950
2951
/* ------------------------ Operations on bin maps ----------------------- */
2952
2953
/* bit corresponding to given index */
2954
#define idx2bit(i) ((binmap_t)(1) << (i))
2955
2956
/* Mark/Clear bits with given index */
2957
#define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i))
2958
#define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i))
2959
#define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i))
2960
2961
#define mark_treemap(M,i) ((M)->treemap |= idx2bit(i))
2962
#define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i))
2963
#define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i))
2964
2965
/* isolate the least set bit of a bitmap */
2966
#define least_bit(x) ((x) & -(x))
2967
2968
/* mask with all bits to left of least bit of x on */
2969
#define left_bits(x) ((x<<1) | -(x<<1))
2970
2971
/* mask with all bits to left of or equal to least bit of x on */
2972
#define same_or_left_bits(x) ((x) | -(x))
2973
2974
/* index corresponding to given bit. Use x86 asm if possible */
2975
2976
#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
2977
#define compute_bit2idx(X, I)\
2978
{\
2979
unsigned int J;\
2980
J = __builtin_ctz(X); \
2981
I = (bindex_t)J;\
2982
}
2983
2984
#elif defined (__INTEL_COMPILER)
2985
#define compute_bit2idx(X, I)\
2986
{\
2987
unsigned int J;\
2988
J = _bit_scan_forward (X); \
2989
I = (bindex_t)J;\
2990
}
2991
2992
#elif defined(_MSC_VER) && _MSC_VER>=1300
2993
#define compute_bit2idx(X, I)\
2994
{\
2995
unsigned int J;\
2996
_BitScanForward((DWORD *) &J, X);\
2997
I = (bindex_t)J;\
2998
}
2999
3000
#elif USE_BUILTIN_FFS
3001
#define compute_bit2idx(X, I) I = ffs(X)-1
3002
3003
#else
3004
#define compute_bit2idx(X, I)\
3005
{\
3006
unsigned int Y = X - 1;\
3007
unsigned int K = Y >> (16-4) & 16;\
3008
unsigned int N = K; Y >>= K;\
3009
N += K = Y >> (8-3) & 8; Y >>= K;\
3010
N += K = Y >> (4-2) & 4; Y >>= K;\
3011
N += K = Y >> (2-1) & 2; Y >>= K;\
3012
N += K = Y >> (1-0) & 1; Y >>= K;\
3013
I = (bindex_t)(N + Y);\
3014
}
3015
#endif /* GNUC */
3016
3017
3018
/* ----------------------- Runtime Check Support ------------------------- */
3019
3020
/*
3021
For security, the main invariant is that malloc/free/etc never
3022
writes to a static address other than malloc_state, unless static
3023
malloc_state itself has been corrupted, which cannot occur via
3024
malloc (because of these checks). In essence this means that we
3025
believe all pointers, sizes, maps etc held in malloc_state, but
3026
check all of those linked or offsetted from other embedded data
3027
structures. These checks are interspersed with main code in a way
3028
that tends to minimize their run-time cost.
3029
3030
When FOOTERS is defined, in addition to range checking, we also
3031
verify footer fields of inuse chunks, which can be used guarantee
3032
that the mstate controlling malloc/free is intact. This is a
3033
streamlined version of the approach described by William Robertson
3034
et al in "Run-time Detection of Heap-based Overflows" LISA'03
3035
http://www.usenix.org/events/lisa03/tech/robertson.html The footer
3036
of an inuse chunk holds the xor of its mstate and a random seed,
3037
that is checked upon calls to free() and realloc(). This is
3038
(probabalistically) unguessable from outside the program, but can be
3039
computed by any code successfully malloc'ing any chunk, so does not
3040
itself provide protection against code that has already broken
3041
security through some other means. Unlike Robertson et al, we
3042
always dynamically check addresses of all offset chunks (previous,
3043
next, etc). This turns out to be cheaper than relying on hashes.
3044
*/
3045
3046
#if !INSECURE
3047
/* Check if address a is at least as high as any from MORECORE or MMAP */
3048
#define ok_address(M, a) ((char*)(a) >= (M)->least_addr)
3049
/* Check if address of next chunk n is higher than base chunk p */
3050
#define ok_next(p, n) ((char*)(p) < (char*)(n))
3051
/* Check if p has inuse status */
3052
#define ok_inuse(p) is_inuse(p)
3053
/* Check if p has its pinuse bit on */
3054
#define ok_pinuse(p) pinuse(p)
3055
3056
#else /* !INSECURE */
3057
#define ok_address(M, a) (1)
3058
#define ok_next(b, n) (1)
3059
#define ok_inuse(p) (1)
3060
#define ok_pinuse(p) (1)
3061
#endif /* !INSECURE */
3062
3063
#if (FOOTERS && !INSECURE)
3064
/* Check if (alleged) mstate m has expected magic field */
3065
#define ok_magic(M) ((M)->magic == mparams.magic)
3066
#else /* (FOOTERS && !INSECURE) */
3067
#define ok_magic(M) (1)
3068
#endif /* (FOOTERS && !INSECURE) */
3069
3070
/* In gcc, use __builtin_expect to minimize impact of checks */
3071
#if !INSECURE
3072
#if defined(__GNUC__) && __GNUC__ >= 3
3073
#define RTCHECK(e) __builtin_expect(e, 1)
3074
#else /* GNUC */
3075
#define RTCHECK(e) (e)
3076
#endif /* GNUC */
3077
#else /* !INSECURE */
3078
#define RTCHECK(e) (1)
3079
#endif /* !INSECURE */
3080
3081
/* macros to set up inuse chunks with or without footers */
3082
3083
#if !FOOTERS
3084
3085
#define mark_inuse_foot(M,p,s)
3086
3087
/* Macros for setting head/foot of non-mmapped chunks */
3088
3089
/* Set cinuse bit and pinuse bit of next chunk */
3090
#define set_inuse(M,p,s)\
3091
((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
3092
((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
3093
3094
/* Set cinuse and pinuse of this chunk and pinuse of next chunk */
3095
#define set_inuse_and_pinuse(M,p,s)\
3096
((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
3097
((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
3098
3099
/* Set size, cinuse and pinuse bit of this chunk */
3100
#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
3101
((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
3102
3103
#else /* FOOTERS */
3104
3105
/* Set foot of inuse chunk to be xor of mstate and seed */
3106
#define mark_inuse_foot(M,p,s)\
3107
(((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic))
3108
3109
#define get_mstate_for(p)\
3110
((mstate)(((mchunkptr)((char*)(p) +\
3111
(chunksize(p))))->prev_foot ^ mparams.magic))
3112
3113
#define set_inuse(M,p,s)\
3114
((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
3115
(((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \
3116
mark_inuse_foot(M,p,s))
3117
3118
#define set_inuse_and_pinuse(M,p,s)\
3119
((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
3120
(((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\
3121
mark_inuse_foot(M,p,s))
3122
3123
#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
3124
((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
3125
mark_inuse_foot(M, p, s))
3126
3127
#endif /* !FOOTERS */
3128
3129
/* ---------------------------- setting mparams -------------------------- */
3130
3131
#if LOCK_AT_FORK
3132
static void pre_fork(void) { ACQUIRE_LOCK(&(gm)->mutex); }
3133
static void post_fork_parent(void) { RELEASE_LOCK(&(gm)->mutex); }
3134
static void post_fork_child(void) { INITIAL_LOCK(&(gm)->mutex); }
3135
#endif /* LOCK_AT_FORK */
3136
3137
/* Initialize mparams */
3138
static int init_mparams(void) {
3139
#ifdef NEED_GLOBAL_LOCK_INIT
3140
if (malloc_global_mutex_status <= 0)
3141
init_malloc_global_mutex();
3142
#endif
3143
3144
ACQUIRE_MALLOC_GLOBAL_LOCK();
3145
if (mparams.magic == 0) {
3146
size_t magic;
3147
size_t psize;
3148
size_t gsize;
3149
3150
#ifndef WIN32
3151
psize = malloc_getpagesize;
3152
gsize = ((DEFAULT_GRANULARITY != 0)? DEFAULT_GRANULARITY : psize);
3153
#else /* WIN32 */
3154
{
3155
SYSTEM_INFO system_info;
3156
GetSystemInfo(&system_info);
3157
psize = system_info.dwPageSize;
3158
gsize = ((DEFAULT_GRANULARITY != 0)?
3159
DEFAULT_GRANULARITY : system_info.dwAllocationGranularity);
3160
}
3161
#endif /* WIN32 */
3162
3163
/* Sanity-check configuration:
3164
size_t must be unsigned and as wide as pointer type.
3165
ints must be at least 4 bytes.
3166
alignment must be at least 8.
3167
Alignment, min chunk size, and page size must all be powers of 2.
3168
*/
3169
if ((sizeof(size_t) != sizeof(char*)) ||
3170
(MAX_SIZE_T < MIN_CHUNK_SIZE) ||
3171
(sizeof(int) < 4) ||
3172
(MALLOC_ALIGNMENT < (size_t)8U) ||
3173
((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) ||
3174
((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) ||
3175
((gsize & (gsize-SIZE_T_ONE)) != 0) ||
3176
((psize & (psize-SIZE_T_ONE)) != 0))
3177
ABORT;
3178
mparams.granularity = gsize;
3179
mparams.page_size = psize;
3180
mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD;
3181
mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD;
3182
#if MORECORE_CONTIGUOUS
3183
mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT;
3184
#else /* MORECORE_CONTIGUOUS */
3185
mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT;
3186
#endif /* MORECORE_CONTIGUOUS */
3187
3188
#if !ONLY_MSPACES
3189
/* Set up lock for main malloc area */
3190
gm->mflags = mparams.default_mflags;
3191
(void)INITIAL_LOCK(&gm->mutex);
3192
#endif
3193
#if LOCK_AT_FORK
3194
pthread_atfork(&pre_fork, &post_fork_parent, &post_fork_child);
3195
#endif
3196
3197
{
3198
#if USE_DEV_RANDOM
3199
int fd;
3200
unsigned char buf[sizeof(size_t)];
3201
/* Try to use /dev/urandom, else fall back on using time */
3202
if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 &&
3203
read(fd, buf, sizeof(buf)) == sizeof(buf)) {
3204
magic = *((size_t *) buf);
3205
close(fd);
3206
}
3207
else
3208
#endif /* USE_DEV_RANDOM */
3209
#ifdef WIN32
3210
magic = (size_t)(GetTickCount() ^ (size_t)0x55555555U);
3211
#elif defined(LACKS_TIME_H)
3212
magic = (size_t)&magic ^ (size_t)0x55555555U;
3213
#else
3214
magic = (size_t)(time(0) ^ (size_t)0x55555555U);
3215
#endif
3216
magic |= (size_t)8U; /* ensure nonzero */
3217
magic &= ~(size_t)7U; /* improve chances of fault for bad values */
3218
/* Until memory modes commonly available, use volatile-write */
3219
(*(volatile size_t *)(&(mparams.magic))) = magic;
3220
}
3221
}
3222
3223
RELEASE_MALLOC_GLOBAL_LOCK();
3224
return 1;
3225
}
3226
3227
/* support for mallopt */
3228
static int change_mparam(int param_number, int value) {
3229
size_t val;
3230
ensure_initialization();
3231
val = (value == -1)? MAX_SIZE_T : (size_t)value;
3232
switch(param_number) {
3233
case M_TRIM_THRESHOLD:
3234
mparams.trim_threshold = val;
3235
return 1;
3236
case M_GRANULARITY:
3237
if (val >= mparams.page_size && ((val & (val-1)) == 0)) {
3238
mparams.granularity = val;
3239
return 1;
3240
}
3241
else
3242
return 0;
3243
case M_MMAP_THRESHOLD:
3244
mparams.mmap_threshold = val;
3245
return 1;
3246
default:
3247
return 0;
3248
}
3249
}
3250
3251
#if DEBUG
3252
/* ------------------------- Debugging Support --------------------------- */
3253
3254
/* Check properties of any chunk, whether free, inuse, mmapped etc */
3255
static void do_check_any_chunk(mstate m, mchunkptr p) {
3256
assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
3257
assert(ok_address(m, p));
3258
}
3259
3260
/* Check properties of top chunk */
3261
static void do_check_top_chunk(mstate m, mchunkptr p) {
3262
msegmentptr sp = segment_holding(m, (char*)p);
3263
size_t sz = p->head & ~INUSE_BITS; /* third-lowest bit can be set! */
3264
assert(sp != 0);
3265
assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
3266
assert(ok_address(m, p));
3267
assert(sz == m->topsize);
3268
assert(sz > 0);
3269
assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE);
3270
assert(pinuse(p));
3271
assert(!pinuse(chunk_plus_offset(p, sz)));
3272
}
3273
3274
/* Check properties of (inuse) mmapped chunks */
3275
static void do_check_mmapped_chunk(mstate m, mchunkptr p) {
3276
size_t sz = chunksize(p);
3277
size_t len = (sz + (p->prev_foot) + MMAP_FOOT_PAD);
3278
assert(is_mmapped(p));
3279
assert(use_mmap(m));
3280
assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
3281
assert(ok_address(m, p));
3282
assert(!is_small(sz));
3283
assert((len & (mparams.page_size-SIZE_T_ONE)) == 0);
3284
assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD);
3285
assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0);
3286
}
3287
3288
/* Check properties of inuse chunks */
3289
static void do_check_inuse_chunk(mstate m, mchunkptr p) {
3290
do_check_any_chunk(m, p);
3291
assert(is_inuse(p));
3292
assert(next_pinuse(p));
3293
/* If not pinuse and not mmapped, previous chunk has OK offset */
3294
assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p);
3295
if (is_mmapped(p))
3296
do_check_mmapped_chunk(m, p);
3297
}
3298
3299
/* Check properties of free chunks */
3300
static void do_check_free_chunk(mstate m, mchunkptr p) {
3301
size_t sz = chunksize(p);
3302
mchunkptr next = chunk_plus_offset(p, sz);
3303
do_check_any_chunk(m, p);
3304
assert(!is_inuse(p));
3305
assert(!next_pinuse(p));
3306
assert (!is_mmapped(p));
3307
if (p != m->dv && p != m->top) {
3308
if (sz >= MIN_CHUNK_SIZE) {
3309
assert((sz & CHUNK_ALIGN_MASK) == 0);
3310
assert(is_aligned(chunk2mem(p)));
3311
assert(next->prev_foot == sz);
3312
assert(pinuse(p));
3313
assert (next == m->top || is_inuse(next));
3314
assert(p->fd->bk == p);
3315
assert(p->bk->fd == p);
3316
}
3317
else /* markers are always of size SIZE_T_SIZE */
3318
assert(sz == SIZE_T_SIZE);
3319
}
3320
}
3321
3322
/* Check properties of malloced chunks at the point they are malloced */
3323
static void do_check_malloced_chunk(mstate m, void* mem, size_t s) {
3324
if (mem != 0) {
3325
mchunkptr p = mem2chunk(mem);
3326
size_t sz = p->head & ~INUSE_BITS;
3327
do_check_inuse_chunk(m, p);
3328
assert((sz & CHUNK_ALIGN_MASK) == 0);
3329
assert(sz >= MIN_CHUNK_SIZE);
3330
assert(sz >= s);
3331
/* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */
3332
assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE));
3333
}
3334
}
3335
3336
/* Check a tree and its subtrees. */
3337
static void do_check_tree(mstate m, tchunkptr t) {
3338
tchunkptr head = 0;
3339
tchunkptr u = t;
3340
bindex_t tindex = t->index;
3341
size_t tsize = chunksize(t);
3342
bindex_t idx;
3343
compute_tree_index(tsize, idx);
3344
assert(tindex == idx);
3345
assert(tsize >= MIN_LARGE_SIZE);
3346
assert(tsize >= minsize_for_tree_index(idx));
3347
assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1))));
3348
3349
do { /* traverse through chain of same-sized nodes */
3350
do_check_any_chunk(m, ((mchunkptr)u));
3351
assert(u->index == tindex);
3352
assert(chunksize(u) == tsize);
3353
assert(!is_inuse(u));
3354
assert(!next_pinuse(u));
3355
assert(u->fd->bk == u);
3356
assert(u->bk->fd == u);
3357
if (u->parent == 0) {
3358
assert(u->child[0] == 0);
3359
assert(u->child[1] == 0);
3360
}
3361
else {
3362
assert(head == 0); /* only one node on chain has parent */
3363
head = u;
3364
assert(u->parent != u);
3365
assert (u->parent->child[0] == u ||
3366
u->parent->child[1] == u ||
3367
*((tbinptr*)(u->parent)) == u);
3368
if (u->child[0] != 0) {
3369
assert(u->child[0]->parent == u);
3370
assert(u->child[0] != u);
3371
do_check_tree(m, u->child[0]);
3372
}
3373
if (u->child[1] != 0) {
3374
assert(u->child[1]->parent == u);
3375
assert(u->child[1] != u);
3376
do_check_tree(m, u->child[1]);
3377
}
3378
if (u->child[0] != 0 && u->child[1] != 0) {
3379
assert(chunksize(u->child[0]) < chunksize(u->child[1]));
3380
}
3381
}
3382
u = u->fd;
3383
} while (u != t);
3384
assert(head != 0);
3385
}
3386
3387
/* Check all the chunks in a treebin. */
3388
static void do_check_treebin(mstate m, bindex_t i) {
3389
tbinptr* tb = treebin_at(m, i);
3390
tchunkptr t = *tb;
3391
int empty = (m->treemap & (1U << i)) == 0;
3392
if (t == 0)
3393
assert(empty);
3394
if (!empty)
3395
do_check_tree(m, t);
3396
}
3397
3398
/* Check all the chunks in a smallbin. */
3399
static void do_check_smallbin(mstate m, bindex_t i) {
3400
sbinptr b = smallbin_at(m, i);
3401
mchunkptr p = b->bk;
3402
unsigned int empty = (m->smallmap & (1U << i)) == 0;
3403
if (p == b)
3404
assert(empty);
3405
if (!empty) {
3406
for (; p != b; p = p->bk) {
3407
size_t size = chunksize(p);
3408
mchunkptr q;
3409
/* each chunk claims to be free */
3410
do_check_free_chunk(m, p);
3411
/* chunk belongs in bin */
3412
assert(small_index(size) == i);
3413
assert(p->bk == b || chunksize(p->bk) == chunksize(p));
3414
/* chunk is followed by an inuse chunk */
3415
q = next_chunk(p);
3416
if (q->head != FENCEPOST_HEAD)
3417
do_check_inuse_chunk(m, q);
3418
}
3419
}
3420
}
3421
3422
/* Find x in a bin. Used in other check functions. */
3423
static int bin_find(mstate m, mchunkptr x) {
3424
size_t size = chunksize(x);
3425
if (is_small(size)) {
3426
bindex_t sidx = small_index(size);
3427
sbinptr b = smallbin_at(m, sidx);
3428
if (smallmap_is_marked(m, sidx)) {
3429
mchunkptr p = b;
3430
do {
3431
if (p == x)
3432
return 1;
3433
} while ((p = p->fd) != b);
3434
}
3435
}
3436
else {
3437
bindex_t tidx;
3438
compute_tree_index(size, tidx);
3439
if (treemap_is_marked(m, tidx)) {
3440
tchunkptr t = *treebin_at(m, tidx);
3441
size_t sizebits = size << leftshift_for_tree_index(tidx);
3442
while (t != 0 && chunksize(t) != size) {
3443
t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
3444
sizebits <<= 1;
3445
}
3446
if (t != 0) {
3447
tchunkptr u = t;
3448
do {
3449
if (u == (tchunkptr)x)
3450
return 1;
3451
} while ((u = u->fd) != t);
3452
}
3453
}
3454
}
3455
return 0;
3456
}
3457
3458
/* Traverse each chunk and check it; return total */
3459
static size_t traverse_and_check(mstate m) {
3460
size_t sum = 0;
3461
if (is_initialized(m)) {
3462
msegmentptr s = &m->seg;
3463
sum += m->topsize + TOP_FOOT_SIZE;
3464
while (s != 0) {
3465
mchunkptr q = align_as_chunk(s->base);
3466
mchunkptr lastq = 0;
3467
assert(pinuse(q));
3468
while (segment_holds(s, q) &&
3469
q != m->top && q->head != FENCEPOST_HEAD) {
3470
sum += chunksize(q);
3471
if (is_inuse(q)) {
3472
assert(!bin_find(m, q));
3473
do_check_inuse_chunk(m, q);
3474
}
3475
else {
3476
assert(q == m->dv || bin_find(m, q));
3477
assert(lastq == 0 || is_inuse(lastq)); /* Not 2 consecutive free */
3478
do_check_free_chunk(m, q);
3479
}
3480
lastq = q;
3481
q = next_chunk(q);
3482
}
3483
s = s->next;
3484
}
3485
}
3486
return sum;
3487
}
3488
3489
3490
/* Check all properties of malloc_state. */
3491
static void do_check_malloc_state(mstate m) {
3492
bindex_t i;
3493
size_t total;
3494
/* check bins */
3495
for (i = 0; i < NSMALLBINS; ++i)
3496
do_check_smallbin(m, i);
3497
for (i = 0; i < NTREEBINS; ++i)
3498
do_check_treebin(m, i);
3499
3500
if (m->dvsize != 0) { /* check dv chunk */
3501
do_check_any_chunk(m, m->dv);
3502
assert(m->dvsize == chunksize(m->dv));
3503
assert(m->dvsize >= MIN_CHUNK_SIZE);
3504
assert(bin_find(m, m->dv) == 0);
3505
}
3506
3507
if (m->top != 0) { /* check top chunk */
3508
do_check_top_chunk(m, m->top);
3509
/*assert(m->topsize == chunksize(m->top)); redundant */
3510
assert(m->topsize > 0);
3511
assert(bin_find(m, m->top) == 0);
3512
}
3513
3514
total = traverse_and_check(m);
3515
assert(total <= m->footprint);
3516
assert(m->footprint <= m->max_footprint);
3517
}
3518
#endif /* DEBUG */
3519
3520
/* ----------------------------- statistics ------------------------------ */
3521
3522
#if !NO_MALLINFO
3523
static struct mallinfo internal_mallinfo(mstate m) {
3524
struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
3525
ensure_initialization();
3526
if (!PREACTION(m)) {
3527
check_malloc_state(m);
3528
if (is_initialized(m)) {
3529
size_t nfree = SIZE_T_ONE; /* top always free */
3530
size_t mfree = m->topsize + TOP_FOOT_SIZE;
3531
size_t sum = mfree;
3532
msegmentptr s = &m->seg;
3533
while (s != 0) {
3534
mchunkptr q = align_as_chunk(s->base);
3535
while (segment_holds(s, q) &&
3536
q != m->top && q->head != FENCEPOST_HEAD) {
3537
size_t sz = chunksize(q);
3538
sum += sz;
3539
if (!is_inuse(q)) {
3540
mfree += sz;
3541
++nfree;
3542
}
3543
q = next_chunk(q);
3544
}
3545
s = s->next;
3546
}
3547
3548
nm.arena = sum;
3549
nm.ordblks = nfree;
3550
nm.hblkhd = m->footprint - sum;
3551
nm.usmblks = m->max_footprint;
3552
nm.uordblks = m->footprint - mfree;
3553
nm.fordblks = mfree;
3554
nm.keepcost = m->topsize;
3555
}
3556
3557
POSTACTION(m);
3558
}
3559
return nm;
3560
}
3561
#endif /* !NO_MALLINFO */
3562
3563
#if !NO_MALLOC_STATS
3564
static void internal_malloc_stats(mstate m) {
3565
ensure_initialization();
3566
if (!PREACTION(m)) {
3567
size_t maxfp = 0;
3568
size_t fp = 0;
3569
size_t used = 0;
3570
check_malloc_state(m);
3571
if (is_initialized(m)) {
3572
msegmentptr s = &m->seg;
3573
maxfp = m->max_footprint;
3574
fp = m->footprint;
3575
used = fp - (m->topsize + TOP_FOOT_SIZE);
3576
3577
while (s != 0) {
3578
mchunkptr q = align_as_chunk(s->base);
3579
while (segment_holds(s, q) &&
3580
q != m->top && q->head != FENCEPOST_HEAD) {
3581
if (!is_inuse(q))
3582
used -= chunksize(q);
3583
q = next_chunk(q);
3584
}
3585
s = s->next;
3586
}
3587
}
3588
POSTACTION(m); /* drop lock */
3589
fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp));
3590
fprintf(stderr, "system bytes = %10lu\n", (unsigned long)(fp));
3591
fprintf(stderr, "in use bytes = %10lu\n", (unsigned long)(used));
3592
}
3593
}
3594
#endif /* NO_MALLOC_STATS */
3595
3596
/* ----------------------- Operations on smallbins ----------------------- */
3597
3598
/*
3599
Various forms of linking and unlinking are defined as macros. Even
3600
the ones for trees, which are very long but have very short typical
3601
paths. This is ugly but reduces reliance on inlining support of
3602
compilers.
3603
*/
3604
3605
/* Link a free chunk into a smallbin */
3606
#define insert_small_chunk(M, P, S) {\
3607
bindex_t I = small_index(S);\
3608
mchunkptr B = smallbin_at(M, I);\
3609
mchunkptr F = B;\
3610
assert(S >= MIN_CHUNK_SIZE);\
3611
if (!smallmap_is_marked(M, I))\
3612
mark_smallmap(M, I);\
3613
else if (RTCHECK(ok_address(M, B->fd)))\
3614
F = B->fd;\
3615
else {\
3616
CORRUPTION_ERROR_ACTION(M);\
3617
}\
3618
B->fd = P;\
3619
F->bk = P;\
3620
P->fd = F;\
3621
P->bk = B;\
3622
}
3623
3624
/* Unlink a chunk from a smallbin */
3625
#define unlink_small_chunk(M, P, S) {\
3626
mchunkptr F = P->fd;\
3627
mchunkptr B = P->bk;\
3628
bindex_t I = small_index(S);\
3629
assert(P != B);\
3630
assert(P != F);\
3631
assert(chunksize(P) == small_index2size(I));\
3632
if (RTCHECK(F == smallbin_at(M,I) || (ok_address(M, F) && F->bk == P))) { \
3633
if (B == F) {\
3634
clear_smallmap(M, I);\
3635
}\
3636
else if (RTCHECK(B == smallbin_at(M,I) ||\
3637
(ok_address(M, B) && B->fd == P))) {\
3638
F->bk = B;\
3639
B->fd = F;\
3640
}\
3641
else {\
3642
CORRUPTION_ERROR_ACTION(M);\
3643
}\
3644
}\
3645
else {\
3646
CORRUPTION_ERROR_ACTION(M);\
3647
}\
3648
}
3649
3650
/* Unlink the first chunk from a smallbin */
3651
#define unlink_first_small_chunk(M, B, P, I) {\
3652
mchunkptr F = P->fd;\
3653
assert(P != B);\
3654
assert(P != F);\
3655
assert(chunksize(P) == small_index2size(I));\
3656
if (B == F) {\
3657
clear_smallmap(M, I);\
3658
}\
3659
else if (RTCHECK(ok_address(M, F) && F->bk == P)) {\
3660
F->bk = B;\
3661
B->fd = F;\
3662
}\
3663
else {\
3664
CORRUPTION_ERROR_ACTION(M);\
3665
}\
3666
}
3667
3668
/* Replace dv node, binning the old one */
3669
/* Used only when dvsize known to be small */
3670
#define replace_dv(M, P, S) {\
3671
size_t DVS = M->dvsize;\
3672
assert(is_small(DVS));\
3673
if (DVS != 0) {\
3674
mchunkptr DV = M->dv;\
3675
insert_small_chunk(M, DV, DVS);\
3676
}\
3677
M->dvsize = S;\
3678
M->dv = P;\
3679
}
3680
3681
/* ------------------------- Operations on trees ------------------------- */
3682
3683
/* Insert chunk into tree */
3684
#define insert_large_chunk(M, X, S) {\
3685
tbinptr* H;\
3686
bindex_t I;\
3687
compute_tree_index(S, I);\
3688
H = treebin_at(M, I);\
3689
X->index = I;\
3690
X->child[0] = X->child[1] = 0;\
3691
if (!treemap_is_marked(M, I)) {\
3692
mark_treemap(M, I);\
3693
*H = X;\
3694
X->parent = (tchunkptr)H;\
3695
X->fd = X->bk = X;\
3696
}\
3697
else {\
3698
tchunkptr T = *H;\
3699
size_t K = S << leftshift_for_tree_index(I);\
3700
for (;;) {\
3701
if (chunksize(T) != S) {\
3702
tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\
3703
K <<= 1;\
3704
if (*C != 0)\
3705
T = *C;\
3706
else if (RTCHECK(ok_address(M, C))) {\
3707
*C = X;\
3708
X->parent = T;\
3709
X->fd = X->bk = X;\
3710
break;\
3711
}\
3712
else {\
3713
CORRUPTION_ERROR_ACTION(M);\
3714
break;\
3715
}\
3716
}\
3717
else {\
3718
tchunkptr F = T->fd;\
3719
if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\
3720
T->fd = F->bk = X;\
3721
X->fd = F;\
3722
X->bk = T;\
3723
X->parent = 0;\
3724
break;\
3725
}\
3726
else {\
3727
CORRUPTION_ERROR_ACTION(M);\
3728
break;\
3729
}\
3730
}\
3731
}\
3732
}\
3733
}
3734
3735
/*
3736
Unlink steps:
3737
3738
1. If x is a chained node, unlink it from its same-sized fd/bk links
3739
and choose its bk node as its replacement.
3740
2. If x was the last node of its size, but not a leaf node, it must
3741
be replaced with a leaf node (not merely one with an open left or
3742
right), to make sure that lefts and rights of descendents
3743
correspond properly to bit masks. We use the rightmost descendent
3744
of x. We could use any other leaf, but this is easy to locate and
3745
tends to counteract removal of leftmosts elsewhere, and so keeps
3746
paths shorter than minimally guaranteed. This doesn't loop much
3747
because on average a node in a tree is near the bottom.
3748
3. If x is the base of a chain (i.e., has parent links) relink
3749
x's parent and children to x's replacement (or null if none).
3750
*/
3751
3752
#define unlink_large_chunk(M, X) {\
3753
tchunkptr XP = X->parent;\
3754
tchunkptr R;\
3755
if (X->bk != X) {\
3756
tchunkptr F = X->fd;\
3757
R = X->bk;\
3758
if (RTCHECK(ok_address(M, F) && F->bk == X && R->fd == X)) {\
3759
F->bk = R;\
3760
R->fd = F;\
3761
}\
3762
else {\
3763
CORRUPTION_ERROR_ACTION(M);\
3764
}\
3765
}\
3766
else {\
3767
tchunkptr* RP;\
3768
if (((R = *(RP = &(X->child[1]))) != 0) ||\
3769
((R = *(RP = &(X->child[0]))) != 0)) {\
3770
tchunkptr* CP;\
3771
while ((*(CP = &(R->child[1])) != 0) ||\
3772
(*(CP = &(R->child[0])) != 0)) {\
3773
R = *(RP = CP);\
3774
}\
3775
if (RTCHECK(ok_address(M, RP)))\
3776
*RP = 0;\
3777
else {\
3778
CORRUPTION_ERROR_ACTION(M);\
3779
}\
3780
}\
3781
}\
3782
if (XP != 0) {\
3783
tbinptr* H = treebin_at(M, X->index);\
3784
if (X == *H) {\
3785
if ((*H = R) == 0) \
3786
clear_treemap(M, X->index);\
3787
}\
3788
else if (RTCHECK(ok_address(M, XP))) {\
3789
if (XP->child[0] == X) \
3790
XP->child[0] = R;\
3791
else \
3792
XP->child[1] = R;\
3793
}\
3794
else\
3795
CORRUPTION_ERROR_ACTION(M);\
3796
if (R != 0) {\
3797
if (RTCHECK(ok_address(M, R))) {\
3798
tchunkptr C0, C1;\
3799
R->parent = XP;\
3800
if ((C0 = X->child[0]) != 0) {\
3801
if (RTCHECK(ok_address(M, C0))) {\
3802
R->child[0] = C0;\
3803
C0->parent = R;\
3804
}\
3805
else\
3806
CORRUPTION_ERROR_ACTION(M);\
3807
}\
3808
if ((C1 = X->child[1]) != 0) {\
3809
if (RTCHECK(ok_address(M, C1))) {\
3810
R->child[1] = C1;\
3811
C1->parent = R;\
3812
}\
3813
else\
3814
CORRUPTION_ERROR_ACTION(M);\
3815
}\
3816
}\
3817
else\
3818
CORRUPTION_ERROR_ACTION(M);\
3819
}\
3820
}\
3821
}
3822
3823
/* Relays to large vs small bin operations */
3824
3825
#define insert_chunk(M, P, S)\
3826
if (is_small(S)) insert_small_chunk(M, P, S)\
3827
else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }
3828
3829
#define unlink_chunk(M, P, S)\
3830
if (is_small(S)) unlink_small_chunk(M, P, S)\
3831
else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
3832
3833
3834
/* Relays to internal calls to malloc/free from realloc, memalign etc */
3835
3836
#if ONLY_MSPACES
3837
#define internal_malloc(m, b) mspace_malloc(m, b)
3838
#define internal_free(m, mem) mspace_free(m,mem);
3839
#else /* ONLY_MSPACES */
3840
#if MSPACES
3841
#define internal_malloc(m, b)\
3842
((m == gm)? dlmalloc(b) : mspace_malloc(m, b))
3843
#define internal_free(m, mem)\
3844
if (m == gm) dlfree(mem); else mspace_free(m,mem);
3845
#else /* MSPACES */
3846
#define internal_malloc(m, b) dlmalloc(b)
3847
#define internal_free(m, mem) dlfree(mem)
3848
#endif /* MSPACES */
3849
#endif /* ONLY_MSPACES */
3850
3851
/* ----------------------- Direct-mmapping chunks ----------------------- */
3852
3853
/*
3854
Directly mmapped chunks are set up with an offset to the start of
3855
the mmapped region stored in the prev_foot field of the chunk. This
3856
allows reconstruction of the required argument to MUNMAP when freed,
3857
and also allows adjustment of the returned chunk to meet alignment
3858
requirements (especially in memalign).
3859
*/
3860
3861
/* Malloc using mmap */
3862
static void* mmap_alloc(mstate m, size_t nb) {
3863
size_t mmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
3864
if (m->footprint_limit != 0) {
3865
size_t fp = m->footprint + mmsize;
3866
if (fp <= m->footprint || fp > m->footprint_limit)
3867
return 0;
3868
}
3869
if (mmsize > nb) { /* Check for wrap around 0 */
3870
char* mm = (char*)(CALL_DIRECT_MMAP(mmsize));
3871
if (mm != CMFAIL) {
3872
size_t offset = align_offset(chunk2mem(mm));
3873
size_t psize = mmsize - offset - MMAP_FOOT_PAD;
3874
mchunkptr p = (mchunkptr)(mm + offset);
3875
p->prev_foot = offset;
3876
p->head = psize;
3877
mark_inuse_foot(m, p, psize);
3878
chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;
3879
chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0;
3880
3881
if (m->least_addr == 0 || mm < m->least_addr)
3882
m->least_addr = mm;
3883
if ((m->footprint += mmsize) > m->max_footprint)
3884
m->max_footprint = m->footprint;
3885
assert(is_aligned(chunk2mem(p)));
3886
check_mmapped_chunk(m, p);
3887
return chunk2mem(p);
3888
}
3889
}
3890
return 0;
3891
}
3892
3893
/* Realloc using mmap */
3894
static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb, int flags) {
3895
size_t oldsize = chunksize(oldp);
3896
(void)flags; /* placate people compiling -Wunused */
3897
if (is_small(nb)) /* Can't shrink mmap regions below small size */
3898
return 0;
3899
/* Keep old chunk if big enough but not too big */
3900
if (oldsize >= nb + SIZE_T_SIZE &&
3901
(oldsize - nb) <= (mparams.granularity << 1))
3902
return oldp;
3903
else {
3904
size_t offset = oldp->prev_foot;
3905
size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD;
3906
size_t newmmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
3907
char* cp = (char*)CALL_MREMAP((char*)oldp - offset,
3908
oldmmsize, newmmsize, flags);
3909
if (cp != CMFAIL) {
3910
mchunkptr newp = (mchunkptr)(cp + offset);
3911
size_t psize = newmmsize - offset - MMAP_FOOT_PAD;
3912
newp->head = psize;
3913
mark_inuse_foot(m, newp, psize);
3914
chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
3915
chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
3916
3917
if (cp < m->least_addr)
3918
m->least_addr = cp;
3919
if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint)
3920
m->max_footprint = m->footprint;
3921
check_mmapped_chunk(m, newp);
3922
return newp;
3923
}
3924
}
3925
return 0;
3926
}
3927
3928
3929
/* -------------------------- mspace management -------------------------- */
3930
3931
/* Initialize top chunk and its size */
3932
static void init_top(mstate m, mchunkptr p, size_t psize) {
3933
/* Ensure alignment */
3934
size_t offset = align_offset(chunk2mem(p));
3935
p = (mchunkptr)((char*)p + offset);
3936
psize -= offset;
3937
3938
m->top = p;
3939
m->topsize = psize;
3940
p->head = psize | PINUSE_BIT;
3941
/* set size of fake trailing chunk holding overhead space only once */
3942
chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;
3943
m->trim_check = mparams.trim_threshold; /* reset on each update */
3944
}
3945
3946
/* Initialize bins for a new mstate that is otherwise zeroed out */
3947
static void init_bins(mstate m) {
3948
/* Establish circular links for smallbins */
3949
bindex_t i;
3950
for (i = 0; i < NSMALLBINS; ++i) {
3951
sbinptr bin = smallbin_at(m,i);
3952
bin->fd = bin->bk = bin;
3953
}
3954
}
3955
3956
#if PROCEED_ON_ERROR
3957
3958
/* default corruption action */
3959
static void reset_on_error(mstate m) {
3960
int i;
3961
++malloc_corruption_error_count;
3962
/* Reinitialize fields to forget about all memory */
3963
m->smallmap = m->treemap = 0;
3964
m->dvsize = m->topsize = 0;
3965
m->seg.base = 0;
3966
m->seg.size = 0;
3967
m->seg.next = 0;
3968
m->top = m->dv = 0;
3969
for (i = 0; i < NTREEBINS; ++i)
3970
*treebin_at(m, i) = 0;
3971
init_bins(m);
3972
}
3973
#endif /* PROCEED_ON_ERROR */
3974
3975
/* Allocate chunk and prepend remainder with chunk in successor base. */
3976
static void* prepend_alloc(mstate m, char* newbase, char* oldbase,
3977
size_t nb) {
3978
mchunkptr p = align_as_chunk(newbase);
3979
mchunkptr oldfirst = align_as_chunk(oldbase);
3980
size_t psize = (char*)oldfirst - (char*)p;
3981
mchunkptr q = chunk_plus_offset(p, nb);
3982
size_t qsize = psize - nb;
3983
set_size_and_pinuse_of_inuse_chunk(m, p, nb);
3984
3985
assert((char*)oldfirst > (char*)q);
3986
assert(pinuse(oldfirst));
3987
assert(qsize >= MIN_CHUNK_SIZE);
3988
3989
/* consolidate remainder with first chunk of old base */
3990
if (oldfirst == m->top) {
3991
size_t tsize = m->topsize += qsize;
3992
m->top = q;
3993
q->head = tsize | PINUSE_BIT;
3994
check_top_chunk(m, q);
3995
}
3996
else if (oldfirst == m->dv) {
3997
size_t dsize = m->dvsize += qsize;
3998
m->dv = q;
3999
set_size_and_pinuse_of_free_chunk(q, dsize);
4000
}
4001
else {
4002
if (!is_inuse(oldfirst)) {
4003
size_t nsize = chunksize(oldfirst);
4004
unlink_chunk(m, oldfirst, nsize);
4005
oldfirst = chunk_plus_offset(oldfirst, nsize);
4006
qsize += nsize;
4007
}
4008
set_free_with_pinuse(q, qsize, oldfirst);
4009
insert_chunk(m, q, qsize);
4010
check_free_chunk(m, q);
4011
}
4012
4013
check_malloced_chunk(m, chunk2mem(p), nb);
4014
return chunk2mem(p);
4015
}
4016
4017
/* Add a segment to hold a new noncontiguous region */
4018
static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) {
4019
/* Determine locations and sizes of segment, fenceposts, old top */
4020
char* old_top = (char*)m->top;
4021
msegmentptr oldsp = segment_holding(m, old_top);
4022
char* old_end = oldsp->base + oldsp->size;
4023
size_t ssize = pad_request(sizeof(struct malloc_segment));
4024
char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
4025
size_t offset = align_offset(chunk2mem(rawsp));
4026
char* asp = rawsp + offset;
4027
char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp;
4028
mchunkptr sp = (mchunkptr)csp;
4029
msegmentptr ss = (msegmentptr)(chunk2mem(sp));
4030
mchunkptr tnext = chunk_plus_offset(sp, ssize);
4031
mchunkptr p = tnext;
4032
int nfences = 0;
4033
4034
/* reset top to new space */
4035
init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
4036
4037
/* Set up segment record */
4038
assert(is_aligned(ss));
4039
set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);
4040
*ss = m->seg; /* Push current record */
4041
m->seg.base = tbase;
4042
m->seg.size = tsize;
4043
m->seg.sflags = mmapped;
4044
m->seg.next = ss;
4045
4046
/* Insert trailing fenceposts */
4047
for (;;) {
4048
mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE);
4049
p->head = FENCEPOST_HEAD;
4050
++nfences;
4051
if ((char*)(&(nextp->head)) < old_end)
4052
p = nextp;
4053
else
4054
break;
4055
}
4056
(void)nfences;
4057
assert(nfences >= 2);
4058
4059
/* Insert the rest of old top into a bin as an ordinary free chunk */
4060
if (csp != old_top) {
4061
mchunkptr q = (mchunkptr)old_top;
4062
size_t psize = csp - old_top;
4063
mchunkptr tn = chunk_plus_offset(q, psize);
4064
set_free_with_pinuse(q, psize, tn);
4065
insert_chunk(m, q, psize);
4066
}
4067
4068
check_top_chunk(m, m->top);
4069
}
4070
4071
/* -------------------------- System allocation -------------------------- */
4072
4073
/* Get memory from system using MORECORE or MMAP */
4074
static void* sys_alloc(mstate m, size_t nb) {
4075
char* tbase = CMFAIL;
4076
size_t tsize = 0;
4077
flag_t mmap_flag = 0;
4078
size_t asize; /* allocation size */
4079
4080
ensure_initialization();
4081
4082
/* Directly map large chunks, but only if already initialized */
4083
if (use_mmap(m) && nb >= mparams.mmap_threshold && m->topsize != 0) {
4084
void* mem = mmap_alloc(m, nb);
4085
if (mem != 0)
4086
return mem;
4087
}
4088
4089
asize = granularity_align(nb + SYS_ALLOC_PADDING);
4090
if (asize <= nb)
4091
return 0; /* wraparound */
4092
if (m->footprint_limit != 0) {
4093
size_t fp = m->footprint + asize;
4094
if (fp <= m->footprint || fp > m->footprint_limit)
4095
return 0;
4096
}
4097
4098
/*
4099
Try getting memory in any of three ways (in most-preferred to
4100
least-preferred order):
4101
1. A call to MORECORE that can normally contiguously extend memory.
4102
(disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or
4103
or main space is mmapped or a previous contiguous call failed)
4104
2. A call to MMAP new space (disabled if not HAVE_MMAP).
4105
Note that under the default settings, if MORECORE is unable to
4106
fulfill a request, and HAVE_MMAP is true, then mmap is
4107
used as a noncontiguous system allocator. This is a useful backup
4108
strategy for systems with holes in address spaces -- in this case
4109
sbrk cannot contiguously expand the heap, but mmap may be able to
4110
find space.
4111
3. A call to MORECORE that cannot usually contiguously extend memory.
4112
(disabled if not HAVE_MORECORE)
4113
4114
In all cases, we need to request enough bytes from system to ensure
4115
we can malloc nb bytes upon success, so pad with enough space for
4116
top_foot, plus alignment-pad to make sure we don't lose bytes if
4117
not on boundary, and round this up to a granularity unit.
4118
*/
4119
4120
if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) {
4121
char* br = CMFAIL;
4122
size_t ssize = asize; /* sbrk call size */
4123
msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top);
4124
ACQUIRE_MALLOC_GLOBAL_LOCK();
4125
4126
if (ss == 0) { /* First time through or recovery */
4127
char* base = (char*)CALL_MORECORE(0);
4128
if (base != CMFAIL) {
4129
size_t fp;
4130
/* Adjust to end on a page boundary */
4131
if (!is_page_aligned(base))
4132
ssize += (page_align((size_t)base) - (size_t)base);
4133
fp = m->footprint + ssize; /* recheck limits */
4134
if (ssize > nb && ssize < HALF_MAX_SIZE_T &&
4135
(m->footprint_limit == 0 ||
4136
(fp > m->footprint && fp <= m->footprint_limit)) &&
4137
(br = (char*)(CALL_MORECORE(ssize))) == base) {
4138
tbase = base;
4139
tsize = ssize;
4140
}
4141
}
4142
}
4143
else {
4144
/* Subtract out existing available top space from MORECORE request. */
4145
ssize = granularity_align(nb - m->topsize + SYS_ALLOC_PADDING);
4146
/* Use mem here only if it did continuously extend old space */
4147
if (ssize < HALF_MAX_SIZE_T &&
4148
(br = (char*)(CALL_MORECORE(ssize))) == ss->base+ss->size) {
4149
tbase = br;
4150
tsize = ssize;
4151
}
4152
}
4153
4154
if (tbase == CMFAIL) { /* Cope with partial failure */
4155
if (br != CMFAIL) { /* Try to use/extend the space we did get */
4156
if (ssize < HALF_MAX_SIZE_T &&
4157
ssize < nb + SYS_ALLOC_PADDING) {
4158
size_t esize = granularity_align(nb + SYS_ALLOC_PADDING - ssize);
4159
if (esize < HALF_MAX_SIZE_T) {
4160
char* end = (char*)CALL_MORECORE(esize);
4161
if (end != CMFAIL)
4162
ssize += esize;
4163
else { /* Can't use; try to release */
4164
(void) CALL_MORECORE(-ssize);
4165
br = CMFAIL;
4166
}
4167
}
4168
}
4169
}
4170
if (br != CMFAIL) { /* Use the space we did get */
4171
tbase = br;
4172
tsize = ssize;
4173
}
4174
else
4175
disable_contiguous(m); /* Don't try contiguous path in the future */
4176
}
4177
4178
RELEASE_MALLOC_GLOBAL_LOCK();
4179
}
4180
4181
if (HAVE_MMAP && tbase == CMFAIL) { /* Try MMAP */
4182
char* mp = (char*)(CALL_MMAP(asize));
4183
if (mp != CMFAIL) {
4184
tbase = mp;
4185
tsize = asize;
4186
mmap_flag = USE_MMAP_BIT;
4187
}
4188
}
4189
4190
if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */
4191
if (asize < HALF_MAX_SIZE_T) {
4192
char* br = CMFAIL;
4193
char* end = CMFAIL;
4194
ACQUIRE_MALLOC_GLOBAL_LOCK();
4195
br = (char*)(CALL_MORECORE(asize));
4196
end = (char*)(CALL_MORECORE(0));
4197
RELEASE_MALLOC_GLOBAL_LOCK();
4198
if (br != CMFAIL && end != CMFAIL && br < end) {
4199
size_t ssize = end - br;
4200
if (ssize > nb + TOP_FOOT_SIZE) {
4201
tbase = br;
4202
tsize = ssize;
4203
}
4204
}
4205
}
4206
}
4207
4208
if (tbase != CMFAIL) {
4209
4210
if ((m->footprint += tsize) > m->max_footprint)
4211
m->max_footprint = m->footprint;
4212
4213
if (!is_initialized(m)) { /* first-time initialization */
4214
if (m->least_addr == 0 || tbase < m->least_addr)
4215
m->least_addr = tbase;
4216
m->seg.base = tbase;
4217
m->seg.size = tsize;
4218
m->seg.sflags = mmap_flag;
4219
m->magic = mparams.magic;
4220
m->release_checks = MAX_RELEASE_CHECK_RATE;
4221
init_bins(m);
4222
#if !ONLY_MSPACES
4223
if (is_global(m))
4224
init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
4225
else
4226
#endif
4227
{
4228
/* Offset top by embedded malloc_state */
4229
mchunkptr mn = next_chunk(mem2chunk(m));
4230
init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE);
4231
}
4232
}
4233
4234
else {
4235
/* Try to merge with an existing segment */
4236
msegmentptr sp = &m->seg;
4237
/* Only consider most recent segment if traversal suppressed */
4238
while (sp != 0 && tbase != sp->base + sp->size)
4239
sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next;
4240
if (sp != 0 &&
4241
!is_extern_segment(sp) &&
4242
(sp->sflags & USE_MMAP_BIT) == mmap_flag &&
4243
segment_holds(sp, m->top)) { /* append */
4244
sp->size += tsize;
4245
init_top(m, m->top, m->topsize + tsize);
4246
}
4247
else {
4248
if (tbase < m->least_addr)
4249
m->least_addr = tbase;
4250
sp = &m->seg;
4251
while (sp != 0 && sp->base != tbase + tsize)
4252
sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next;
4253
if (sp != 0 &&
4254
!is_extern_segment(sp) &&
4255
(sp->sflags & USE_MMAP_BIT) == mmap_flag) {
4256
char* oldbase = sp->base;
4257
sp->base = tbase;
4258
sp->size += tsize;
4259
return prepend_alloc(m, tbase, oldbase, nb);
4260
}
4261
else
4262
add_segment(m, tbase, tsize, mmap_flag);
4263
}
4264
}
4265
4266
if (nb < m->topsize) { /* Allocate from new or extended top space */
4267
size_t rsize = m->topsize -= nb;
4268
mchunkptr p = m->top;
4269
mchunkptr r = m->top = chunk_plus_offset(p, nb);
4270
r->head = rsize | PINUSE_BIT;
4271
set_size_and_pinuse_of_inuse_chunk(m, p, nb);
4272
check_top_chunk(m, m->top);
4273
check_malloced_chunk(m, chunk2mem(p), nb);
4274
return chunk2mem(p);
4275
}
4276
}
4277
4278
MALLOC_FAILURE_ACTION;
4279
return 0;
4280
}
4281
4282
/* ----------------------- system deallocation -------------------------- */
4283
4284
/* Unmap and unlink any mmapped segments that don't contain used chunks */
4285
static size_t release_unused_segments(mstate m) {
4286
size_t released = 0;
4287
int nsegs = 0;
4288
msegmentptr pred = &m->seg;
4289
msegmentptr sp = pred->next;
4290
while (sp != 0) {
4291
char* base = sp->base;
4292
size_t size = sp->size;
4293
msegmentptr next = sp->next;
4294
++nsegs;
4295
if (is_mmapped_segment(sp) && !is_extern_segment(sp)) {
4296
mchunkptr p = align_as_chunk(base);
4297
size_t psize = chunksize(p);
4298
/* Can unmap if first chunk holds entire segment and not pinned */
4299
if (!is_inuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) {
4300
tchunkptr tp = (tchunkptr)p;
4301
assert(segment_holds(sp, (char*)sp));
4302
if (p == m->dv) {
4303
m->dv = 0;
4304
m->dvsize = 0;
4305
}
4306
else {
4307
unlink_large_chunk(m, tp);
4308
}
4309
if (CALL_MUNMAP(base, size) == 0) {
4310
released += size;
4311
m->footprint -= size;
4312
/* unlink obsoleted record */
4313
sp = pred;
4314
sp->next = next;
4315
}
4316
else { /* back out if cannot unmap */
4317
insert_large_chunk(m, tp, psize);
4318
}
4319
}
4320
}
4321
if (NO_SEGMENT_TRAVERSAL) /* scan only first segment */
4322
break;
4323
pred = sp;
4324
sp = next;
4325
}
4326
/* Reset check counter */
4327
m->release_checks = (((size_t) nsegs > (size_t) MAX_RELEASE_CHECK_RATE)?
4328
(size_t) nsegs : (size_t) MAX_RELEASE_CHECK_RATE);
4329
return released;
4330
}
4331
4332
static int sys_trim(mstate m, size_t pad) {
4333
size_t released = 0;
4334
ensure_initialization();
4335
if (pad < MAX_REQUEST && is_initialized(m)) {
4336
pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */
4337
4338
if (m->topsize > pad) {
4339
/* Shrink top space in granularity-size units, keeping at least one */
4340
size_t unit = mparams.granularity;
4341
size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit -
4342
SIZE_T_ONE) * unit;
4343
msegmentptr sp = segment_holding(m, (char*)m->top);
4344
4345
if (!is_extern_segment(sp)) {
4346
if (is_mmapped_segment(sp)) {
4347
if (HAVE_MMAP &&
4348
sp->size >= extra &&
4349
!has_segment_link(m, sp)) { /* can't shrink if pinned */
4350
size_t newsize = sp->size - extra;
4351
(void)newsize; /* placate people compiling -Wunused-variable */
4352
/* Prefer mremap, fall back to munmap */
4353
if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) ||
4354
(CALL_MUNMAP(sp->base + newsize, extra) == 0)) {
4355
released = extra;
4356
}
4357
}
4358
}
4359
else if (HAVE_MORECORE) {
4360
if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */
4361
extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit;
4362
ACQUIRE_MALLOC_GLOBAL_LOCK();
4363
{
4364
/* Make sure end of memory is where we last set it. */
4365
char* old_br = (char*)(CALL_MORECORE(0));
4366
if (old_br == sp->base + sp->size) {
4367
char* rel_br = (char*)(CALL_MORECORE(-extra));
4368
char* new_br = (char*)(CALL_MORECORE(0));
4369
if (rel_br != CMFAIL && new_br < old_br)
4370
released = old_br - new_br;
4371
}
4372
}
4373
RELEASE_MALLOC_GLOBAL_LOCK();
4374
}
4375
}
4376
4377
if (released != 0) {
4378
sp->size -= released;
4379
m->footprint -= released;
4380
init_top(m, m->top, m->topsize - released);
4381
check_top_chunk(m, m->top);
4382
}
4383
}
4384
4385
/* Unmap any unused mmapped segments */
4386
if (HAVE_MMAP)
4387
released += release_unused_segments(m);
4388
4389
/* On failure, disable autotrim to avoid repeated failed future calls */
4390
if (released == 0 && m->topsize > m->trim_check)
4391
m->trim_check = MAX_SIZE_T;
4392
}
4393
4394
return (released != 0)? 1 : 0;
4395
}
4396
4397
/* Consolidate and bin a chunk. Differs from exported versions
4398
of free mainly in that the chunk need not be marked as inuse.
4399
*/
4400
static void dispose_chunk(mstate m, mchunkptr p, size_t psize) {
4401
mchunkptr next = chunk_plus_offset(p, psize);
4402
if (!pinuse(p)) {
4403
mchunkptr prev;
4404
size_t prevsize = p->prev_foot;
4405
if (is_mmapped(p)) {
4406
psize += prevsize + MMAP_FOOT_PAD;
4407
if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
4408
m->footprint -= psize;
4409
return;
4410
}
4411
prev = chunk_minus_offset(p, prevsize);
4412
psize += prevsize;
4413
p = prev;
4414
if (RTCHECK(ok_address(m, prev))) { /* consolidate backward */
4415
if (p != m->dv) {
4416
unlink_chunk(m, p, prevsize);
4417
}
4418
else if ((next->head & INUSE_BITS) == INUSE_BITS) {
4419
m->dvsize = psize;
4420
set_free_with_pinuse(p, psize, next);
4421
return;
4422
}
4423
}
4424
else {
4425
CORRUPTION_ERROR_ACTION(m);
4426
return;
4427
}
4428
}
4429
if (RTCHECK(ok_address(m, next))) {
4430
if (!cinuse(next)) { /* consolidate forward */
4431
if (next == m->top) {
4432
size_t tsize = m->topsize += psize;
4433
m->top = p;
4434
p->head = tsize | PINUSE_BIT;
4435
if (p == m->dv) {
4436
m->dv = 0;
4437
m->dvsize = 0;
4438
}
4439
return;
4440
}
4441
else if (next == m->dv) {
4442
size_t dsize = m->dvsize += psize;
4443
m->dv = p;
4444
set_size_and_pinuse_of_free_chunk(p, dsize);
4445
return;
4446
}
4447
else {
4448
size_t nsize = chunksize(next);
4449
psize += nsize;
4450
unlink_chunk(m, next, nsize);
4451
set_size_and_pinuse_of_free_chunk(p, psize);
4452
if (p == m->dv) {
4453
m->dvsize = psize;
4454
return;
4455
}
4456
}
4457
}
4458
else {
4459
set_free_with_pinuse(p, psize, next);
4460
}
4461
insert_chunk(m, p, psize);
4462
}
4463
else {
4464
CORRUPTION_ERROR_ACTION(m);
4465
}
4466
}
4467
4468
/* ---------------------------- malloc --------------------------- */
4469
4470
/* allocate a large request from the best fitting chunk in a treebin */
4471
static void* tmalloc_large(mstate m, size_t nb) {
4472
tchunkptr v = 0;
4473
size_t rsize = -nb; /* Unsigned negation */
4474
tchunkptr t;
4475
bindex_t idx;
4476
compute_tree_index(nb, idx);
4477
if ((t = *treebin_at(m, idx)) != 0) {
4478
/* Traverse tree for this bin looking for node with size == nb */
4479
size_t sizebits = nb << leftshift_for_tree_index(idx);
4480
tchunkptr rst = 0; /* The deepest untaken right subtree */
4481
for (;;) {
4482
tchunkptr rt;
4483
size_t trem = chunksize(t) - nb;
4484
if (trem < rsize) {
4485
v = t;
4486
if ((rsize = trem) == 0)
4487
break;
4488
}
4489
rt = t->child[1];
4490
t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
4491
if (rt != 0 && rt != t)
4492
rst = rt;
4493
if (t == 0) {
4494
t = rst; /* set t to least subtree holding sizes > nb */
4495
break;
4496
}
4497
sizebits <<= 1;
4498
}
4499
}
4500
if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */
4501
binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
4502
if (leftbits != 0) {
4503
bindex_t i;
4504
binmap_t leastbit = least_bit(leftbits);
4505
compute_bit2idx(leastbit, i);
4506
t = *treebin_at(m, i);
4507
}
4508
}
4509
4510
while (t != 0) { /* find smallest of tree or subtree */
4511
size_t trem = chunksize(t) - nb;
4512
if (trem < rsize) {
4513
rsize = trem;
4514
v = t;
4515
}
4516
t = leftmost_child(t);
4517
}
4518
4519
/* If dv is a better fit, return 0 so malloc will use it */
4520
if (v != 0 && rsize < (size_t)(m->dvsize - nb)) {
4521
if (RTCHECK(ok_address(m, v))) { /* split */
4522
mchunkptr r = chunk_plus_offset(v, nb);
4523
assert(chunksize(v) == rsize + nb);
4524
if (RTCHECK(ok_next(v, r))) {
4525
unlink_large_chunk(m, v);
4526
if (rsize < MIN_CHUNK_SIZE)
4527
set_inuse_and_pinuse(m, v, (rsize + nb));
4528
else {
4529
set_size_and_pinuse_of_inuse_chunk(m, v, nb);
4530
set_size_and_pinuse_of_free_chunk(r, rsize);
4531
insert_chunk(m, r, rsize);
4532
}
4533
return chunk2mem(v);
4534
}
4535
}
4536
CORRUPTION_ERROR_ACTION(m);
4537
}
4538
return 0;
4539
}
4540
4541
/* allocate a small request from the best fitting chunk in a treebin */
4542
static void* tmalloc_small(mstate m, size_t nb) {
4543
tchunkptr t, v;
4544
size_t rsize;
4545
bindex_t i;
4546
binmap_t leastbit = least_bit(m->treemap);
4547
compute_bit2idx(leastbit, i);
4548
v = t = *treebin_at(m, i);
4549
rsize = chunksize(t) - nb;
4550
4551
while ((t = leftmost_child(t)) != 0) {
4552
size_t trem = chunksize(t) - nb;
4553
if (trem < rsize) {
4554
rsize = trem;
4555
v = t;
4556
}
4557
}
4558
4559
if (RTCHECK(ok_address(m, v))) {
4560
mchunkptr r = chunk_plus_offset(v, nb);
4561
assert(chunksize(v) == rsize + nb);
4562
if (RTCHECK(ok_next(v, r))) {
4563
unlink_large_chunk(m, v);
4564
if (rsize < MIN_CHUNK_SIZE)
4565
set_inuse_and_pinuse(m, v, (rsize + nb));
4566
else {
4567
set_size_and_pinuse_of_inuse_chunk(m, v, nb);
4568
set_size_and_pinuse_of_free_chunk(r, rsize);
4569
replace_dv(m, r, rsize);
4570
}
4571
return chunk2mem(v);
4572
}
4573
}
4574
4575
CORRUPTION_ERROR_ACTION(m);
4576
return 0;
4577
}
4578
4579
#if !ONLY_MSPACES
4580
4581
void* dlmalloc(size_t bytes) {
4582
/*
4583
Basic algorithm:
4584
If a small request (< 256 bytes minus per-chunk overhead):
4585
1. If one exists, use a remainderless chunk in associated smallbin.
4586
(Remainderless means that there are too few excess bytes to
4587
represent as a chunk.)
4588
2. If it is big enough, use the dv chunk, which is normally the
4589
chunk adjacent to the one used for the most recent small request.
4590
3. If one exists, split the smallest available chunk in a bin,
4591
saving remainder in dv.
4592
4. If it is big enough, use the top chunk.
4593
5. If available, get memory from system and use it
4594
Otherwise, for a large request:
4595
1. Find the smallest available binned chunk that fits, and use it
4596
if it is better fitting than dv chunk, splitting if necessary.
4597
2. If better fitting than any binned chunk, use the dv chunk.
4598
3. If it is big enough, use the top chunk.
4599
4. If request size >= mmap threshold, try to directly mmap this chunk.
4600
5. If available, get memory from system and use it
4601
4602
The ugly goto's here ensure that postaction occurs along all paths.
4603
*/
4604
4605
#if USE_LOCKS
4606
ensure_initialization(); /* initialize in sys_alloc if not using locks */
4607
#endif
4608
4609
if (!PREACTION(gm)) {
4610
void* mem;
4611
size_t nb;
4612
if (bytes <= MAX_SMALL_REQUEST) {
4613
bindex_t idx;
4614
binmap_t smallbits;
4615
nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
4616
idx = small_index(nb);
4617
smallbits = gm->smallmap >> idx;
4618
4619
if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
4620
mchunkptr b, p;
4621
idx += ~smallbits & 1; /* Uses next bin if idx empty */
4622
b = smallbin_at(gm, idx);
4623
p = b->fd;
4624
assert(chunksize(p) == small_index2size(idx));
4625
unlink_first_small_chunk(gm, b, p, idx);
4626
set_inuse_and_pinuse(gm, p, small_index2size(idx));
4627
mem = chunk2mem(p);
4628
check_malloced_chunk(gm, mem, nb);
4629
goto postaction;
4630
}
4631
4632
else if (nb > gm->dvsize) {
4633
if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
4634
mchunkptr b, p, r;
4635
size_t rsize;
4636
bindex_t i;
4637
binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
4638
binmap_t leastbit = least_bit(leftbits);
4639
compute_bit2idx(leastbit, i);
4640
b = smallbin_at(gm, i);
4641
p = b->fd;
4642
assert(chunksize(p) == small_index2size(i));
4643
unlink_first_small_chunk(gm, b, p, i);
4644
rsize = small_index2size(i) - nb;
4645
/* Fit here cannot be remainderless if 4byte sizes */
4646
if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
4647
set_inuse_and_pinuse(gm, p, small_index2size(i));
4648
else {
4649
set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
4650
r = chunk_plus_offset(p, nb);
4651
set_size_and_pinuse_of_free_chunk(r, rsize);
4652
replace_dv(gm, r, rsize);
4653
}
4654
mem = chunk2mem(p);
4655
check_malloced_chunk(gm, mem, nb);
4656
goto postaction;
4657
}
4658
4659
else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) {
4660
check_malloced_chunk(gm, mem, nb);
4661
goto postaction;
4662
}
4663
}
4664
}
4665
else if (bytes >= MAX_REQUEST)
4666
nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
4667
else {
4668
nb = pad_request(bytes);
4669
if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) {
4670
check_malloced_chunk(gm, mem, nb);
4671
goto postaction;
4672
}
4673
}
4674
4675
if (nb <= gm->dvsize) {
4676
size_t rsize = gm->dvsize - nb;
4677
mchunkptr p = gm->dv;
4678
if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
4679
mchunkptr r = gm->dv = chunk_plus_offset(p, nb);
4680
gm->dvsize = rsize;
4681
set_size_and_pinuse_of_free_chunk(r, rsize);
4682
set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
4683
}
4684
else { /* exhaust dv */
4685
size_t dvs = gm->dvsize;
4686
gm->dvsize = 0;
4687
gm->dv = 0;
4688
set_inuse_and_pinuse(gm, p, dvs);
4689
}
4690
mem = chunk2mem(p);
4691
check_malloced_chunk(gm, mem, nb);
4692
goto postaction;
4693
}
4694
4695
else if (nb < gm->topsize) { /* Split top */
4696
size_t rsize = gm->topsize -= nb;
4697
mchunkptr p = gm->top;
4698
mchunkptr r = gm->top = chunk_plus_offset(p, nb);
4699
r->head = rsize | PINUSE_BIT;
4700
set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
4701
mem = chunk2mem(p);
4702
check_top_chunk(gm, gm->top);
4703
check_malloced_chunk(gm, mem, nb);
4704
goto postaction;
4705
}
4706
4707
mem = sys_alloc(gm, nb);
4708
4709
postaction:
4710
POSTACTION(gm);
4711
return mem;
4712
}
4713
4714
return 0;
4715
}
4716
4717
/* ---------------------------- free --------------------------- */
4718
4719
void dlfree(void* mem) {
4720
/*
4721
Consolidate freed chunks with preceeding or succeeding bordering
4722
free chunks, if they exist, and then place in a bin. Intermixed
4723
with special cases for top, dv, mmapped chunks, and usage errors.
4724
*/
4725
4726
if (mem != 0) {
4727
mchunkptr p = mem2chunk(mem);
4728
#if FOOTERS
4729
mstate fm = get_mstate_for(p);
4730
if (!ok_magic(fm)) {
4731
USAGE_ERROR_ACTION(fm, p);
4732
return;
4733
}
4734
#else /* FOOTERS */
4735
#define fm gm
4736
#endif /* FOOTERS */
4737
if (!PREACTION(fm)) {
4738
check_inuse_chunk(fm, p);
4739
if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) {
4740
size_t psize = chunksize(p);
4741
mchunkptr next = chunk_plus_offset(p, psize);
4742
if (!pinuse(p)) {
4743
size_t prevsize = p->prev_foot;
4744
if (is_mmapped(p)) {
4745
psize += prevsize + MMAP_FOOT_PAD;
4746
if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
4747
fm->footprint -= psize;
4748
goto postaction;
4749
}
4750
else {
4751
mchunkptr prev = chunk_minus_offset(p, prevsize);
4752
psize += prevsize;
4753
p = prev;
4754
if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
4755
if (p != fm->dv) {
4756
unlink_chunk(fm, p, prevsize);
4757
}
4758
else if ((next->head & INUSE_BITS) == INUSE_BITS) {
4759
fm->dvsize = psize;
4760
set_free_with_pinuse(p, psize, next);
4761
goto postaction;
4762
}
4763
}
4764
else
4765
goto erroraction;
4766
}
4767
}
4768
4769
if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
4770
if (!cinuse(next)) { /* consolidate forward */
4771
if (next == fm->top) {
4772
size_t tsize = fm->topsize += psize;
4773
fm->top = p;
4774
p->head = tsize | PINUSE_BIT;
4775
if (p == fm->dv) {
4776
fm->dv = 0;
4777
fm->dvsize = 0;
4778
}
4779
if (should_trim(fm, tsize))
4780
sys_trim(fm, 0);
4781
goto postaction;
4782
}
4783
else if (next == fm->dv) {
4784
size_t dsize = fm->dvsize += psize;
4785
fm->dv = p;
4786
set_size_and_pinuse_of_free_chunk(p, dsize);
4787
goto postaction;
4788
}
4789
else {
4790
size_t nsize = chunksize(next);
4791
psize += nsize;
4792
unlink_chunk(fm, next, nsize);
4793
set_size_and_pinuse_of_free_chunk(p, psize);
4794
if (p == fm->dv) {
4795
fm->dvsize = psize;
4796
goto postaction;
4797
}
4798
}
4799
}
4800
else
4801
set_free_with_pinuse(p, psize, next);
4802
4803
if (is_small(psize)) {
4804
insert_small_chunk(fm, p, psize);
4805
check_free_chunk(fm, p);
4806
}
4807
else {
4808
tchunkptr tp = (tchunkptr)p;
4809
insert_large_chunk(fm, tp, psize);
4810
check_free_chunk(fm, p);
4811
if (--fm->release_checks == 0)
4812
release_unused_segments(fm);
4813
}
4814
goto postaction;
4815
}
4816
}
4817
erroraction:
4818
USAGE_ERROR_ACTION(fm, p);
4819
postaction:
4820
POSTACTION(fm);
4821
}
4822
}
4823
#if !FOOTERS
4824
#undef fm
4825
#endif /* FOOTERS */
4826
}
4827
4828
void* dlcalloc(size_t n_elements, size_t elem_size) {
4829
void* mem;
4830
size_t req = 0;
4831
if (n_elements != 0) {
4832
req = n_elements * elem_size;
4833
if (((n_elements | elem_size) & ~(size_t)0xffff) &&
4834
(req / n_elements != elem_size))
4835
req = MAX_SIZE_T; /* force downstream failure on overflow */
4836
}
4837
mem = dlmalloc(req);
4838
if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
4839
memset(mem, 0, req);
4840
return mem;
4841
}
4842
4843
#endif /* !ONLY_MSPACES */
4844
4845
/* ------------ Internal support for realloc, memalign, etc -------------- */
4846
4847
/* Try to realloc; only in-place unless can_move true */
4848
static mchunkptr try_realloc_chunk(mstate m, mchunkptr p, size_t nb,
4849
int can_move) {
4850
mchunkptr newp = 0;
4851
size_t oldsize = chunksize(p);
4852
mchunkptr next = chunk_plus_offset(p, oldsize);
4853
if (RTCHECK(ok_address(m, p) && ok_inuse(p) &&
4854
ok_next(p, next) && ok_pinuse(next))) {
4855
if (is_mmapped(p)) {
4856
newp = mmap_resize(m, p, nb, can_move);
4857
}
4858
else if (oldsize >= nb) { /* already big enough */
4859
size_t rsize = oldsize - nb;
4860
if (rsize >= MIN_CHUNK_SIZE) { /* split off remainder */
4861
mchunkptr r = chunk_plus_offset(p, nb);
4862
set_inuse(m, p, nb);
4863
set_inuse(m, r, rsize);
4864
dispose_chunk(m, r, rsize);
4865
}
4866
newp = p;
4867
}
4868
else if (next == m->top) { /* extend into top */
4869
if (oldsize + m->topsize > nb) {
4870
size_t newsize = oldsize + m->topsize;
4871
size_t newtopsize = newsize - nb;
4872
mchunkptr newtop = chunk_plus_offset(p, nb);
4873
set_inuse(m, p, nb);
4874
newtop->head = newtopsize |PINUSE_BIT;
4875
m->top = newtop;
4876
m->topsize = newtopsize;
4877
newp = p;
4878
}
4879
}
4880
else if (next == m->dv) { /* extend into dv */
4881
size_t dvs = m->dvsize;
4882
if (oldsize + dvs >= nb) {
4883
size_t dsize = oldsize + dvs - nb;
4884
if (dsize >= MIN_CHUNK_SIZE) {
4885
mchunkptr r = chunk_plus_offset(p, nb);
4886
mchunkptr n = chunk_plus_offset(r, dsize);
4887
set_inuse(m, p, nb);
4888
set_size_and_pinuse_of_free_chunk(r, dsize);
4889
clear_pinuse(n);
4890
m->dvsize = dsize;
4891
m->dv = r;
4892
}
4893
else { /* exhaust dv */
4894
size_t newsize = oldsize + dvs;
4895
set_inuse(m, p, newsize);
4896
m->dvsize = 0;
4897
m->dv = 0;
4898
}
4899
newp = p;
4900
}
4901
}
4902
else if (!cinuse(next)) { /* extend into next free chunk */
4903
size_t nextsize = chunksize(next);
4904
if (oldsize + nextsize >= nb) {
4905
size_t rsize = oldsize + nextsize - nb;
4906
unlink_chunk(m, next, nextsize);
4907
if (rsize < MIN_CHUNK_SIZE) {
4908
size_t newsize = oldsize + nextsize;
4909
set_inuse(m, p, newsize);
4910
}
4911
else {
4912
mchunkptr r = chunk_plus_offset(p, nb);
4913
set_inuse(m, p, nb);
4914
set_inuse(m, r, rsize);
4915
dispose_chunk(m, r, rsize);
4916
}
4917
newp = p;
4918
}
4919
}
4920
}
4921
else {
4922
USAGE_ERROR_ACTION(m, chunk2mem(p));
4923
}
4924
return newp;
4925
}
4926
4927
static void* internal_memalign(mstate m, size_t alignment, size_t bytes) {
4928
void* mem = 0;
4929
if (alignment < MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */
4930
alignment = MIN_CHUNK_SIZE;
4931
if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */
4932
size_t a = MALLOC_ALIGNMENT << 1;
4933
while (a < alignment) a <<= 1;
4934
alignment = a;
4935
}
4936
if (bytes >= MAX_REQUEST - alignment) {
4937
if (m != 0) { /* Test isn't needed but avoids compiler warning */
4938
MALLOC_FAILURE_ACTION;
4939
}
4940
}
4941
else {
4942
size_t nb = request2size(bytes);
4943
size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD;
4944
mem = internal_malloc(m, req);
4945
if (mem != 0) {
4946
mchunkptr p = mem2chunk(mem);
4947
if (PREACTION(m))
4948
return 0;
4949
if ((((size_t)(mem)) & (alignment - 1)) != 0) { /* misaligned */
4950
/*
4951
Find an aligned spot inside chunk. Since we need to give
4952
back leading space in a chunk of at least MIN_CHUNK_SIZE, if
4953
the first calculation places us at a spot with less than
4954
MIN_CHUNK_SIZE leader, we can move to the next aligned spot.
4955
We've allocated enough total room so that this is always
4956
possible.
4957
*/
4958
char* br = (char*)mem2chunk((size_t)(((size_t)((char*)mem + alignment -
4959
SIZE_T_ONE)) &
4960
-alignment));
4961
char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)?
4962
br : br+alignment;
4963
mchunkptr newp = (mchunkptr)pos;
4964
size_t leadsize = pos - (char*)(p);
4965
size_t newsize = chunksize(p) - leadsize;
4966
4967
if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */
4968
newp->prev_foot = p->prev_foot + leadsize;
4969
newp->head = newsize;
4970
}
4971
else { /* Otherwise, give back leader, use the rest */
4972
set_inuse(m, newp, newsize);
4973
set_inuse(m, p, leadsize);
4974
dispose_chunk(m, p, leadsize);
4975
}
4976
p = newp;
4977
}
4978
4979
/* Give back spare room at the end */
4980
if (!is_mmapped(p)) {
4981
size_t size = chunksize(p);
4982
if (size > nb + MIN_CHUNK_SIZE) {
4983
size_t remainder_size = size - nb;
4984
mchunkptr remainder = chunk_plus_offset(p, nb);
4985
set_inuse(m, p, nb);
4986
set_inuse(m, remainder, remainder_size);
4987
dispose_chunk(m, remainder, remainder_size);
4988
}
4989
}
4990
4991
mem = chunk2mem(p);
4992
assert (chunksize(p) >= nb);
4993
assert(((size_t)mem & (alignment - 1)) == 0);
4994
check_inuse_chunk(m, p);
4995
POSTACTION(m);
4996
}
4997
}
4998
return mem;
4999
}
5000
5001
/*
5002
Common support for independent_X routines, handling
5003
all of the combinations that can result.
5004
The opts arg has:
5005
bit 0 set if all elements are same size (using sizes[0])
5006
bit 1 set if elements should be zeroed
5007
*/
5008
static void** ialloc(mstate m,
5009
size_t n_elements,
5010
size_t* sizes,
5011
int opts,
5012
void* chunks[]) {
5013
5014
size_t element_size; /* chunksize of each element, if all same */
5015
size_t contents_size; /* total size of elements */
5016
size_t array_size; /* request size of pointer array */
5017
void* mem; /* malloced aggregate space */
5018
mchunkptr p; /* corresponding chunk */
5019
size_t remainder_size; /* remaining bytes while splitting */
5020
void** marray; /* either "chunks" or malloced ptr array */
5021
mchunkptr array_chunk; /* chunk for malloced ptr array */
5022
flag_t was_enabled; /* to disable mmap */
5023
size_t size;
5024
size_t i;
5025
5026
ensure_initialization();
5027
/* compute array length, if needed */
5028
if (chunks != 0) {
5029
if (n_elements == 0)
5030
return chunks; /* nothing to do */
5031
marray = chunks;
5032
array_size = 0;
5033
}
5034
else {
5035
/* if empty req, must still return chunk representing empty array */
5036
if (n_elements == 0)
5037
return (void**)internal_malloc(m, 0);
5038
marray = 0;
5039
array_size = request2size(n_elements * (sizeof(void*)));
5040
}
5041
5042
/* compute total element size */
5043
if (opts & 0x1) { /* all-same-size */
5044
element_size = request2size(*sizes);
5045
contents_size = n_elements * element_size;
5046
}
5047
else { /* add up all the sizes */
5048
element_size = 0;
5049
contents_size = 0;
5050
for (i = 0; i != n_elements; ++i)
5051
contents_size += request2size(sizes[i]);
5052
}
5053
5054
size = contents_size + array_size;
5055
5056
/*
5057
Allocate the aggregate chunk. First disable direct-mmapping so
5058
malloc won't use it, since we would not be able to later
5059
free/realloc space internal to a segregated mmap region.
5060
*/
5061
was_enabled = use_mmap(m);
5062
disable_mmap(m);
5063
mem = internal_malloc(m, size - CHUNK_OVERHEAD);
5064
if (was_enabled)
5065
enable_mmap(m);
5066
if (mem == 0)
5067
return 0;
5068
5069
if (PREACTION(m)) return 0;
5070
p = mem2chunk(mem);
5071
remainder_size = chunksize(p);
5072
5073
assert(!is_mmapped(p));
5074
5075
if (opts & 0x2) { /* optionally clear the elements */
5076
memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size);
5077
}
5078
5079
/* If not provided, allocate the pointer array as final part of chunk */
5080
if (marray == 0) {
5081
size_t array_chunk_size;
5082
array_chunk = chunk_plus_offset(p, contents_size);
5083
array_chunk_size = remainder_size - contents_size;
5084
marray = (void**) (chunk2mem(array_chunk));
5085
set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size);
5086
remainder_size = contents_size;
5087
}
5088
5089
/* split out elements */
5090
for (i = 0; ; ++i) {
5091
marray[i] = chunk2mem(p);
5092
if (i != n_elements-1) {
5093
if (element_size != 0)
5094
size = element_size;
5095
else
5096
size = request2size(sizes[i]);
5097
remainder_size -= size;
5098
set_size_and_pinuse_of_inuse_chunk(m, p, size);
5099
p = chunk_plus_offset(p, size);
5100
}
5101
else { /* the final element absorbs any overallocation slop */
5102
set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);
5103
break;
5104
}
5105
}
5106
5107
#if DEBUG
5108
if (marray != chunks) {
5109
/* final element must have exactly exhausted chunk */
5110
if (element_size != 0) {
5111
assert(remainder_size == element_size);
5112
}
5113
else {
5114
assert(remainder_size == request2size(sizes[i]));
5115
}
5116
check_inuse_chunk(m, mem2chunk(marray));
5117
}
5118
for (i = 0; i != n_elements; ++i)
5119
check_inuse_chunk(m, mem2chunk(marray[i]));
5120
5121
#endif /* DEBUG */
5122
5123
POSTACTION(m);
5124
return marray;
5125
}
5126
5127
/* Try to free all pointers in the given array.
5128
Note: this could be made faster, by delaying consolidation,
5129
at the price of disabling some user integrity checks, We
5130
still optimize some consolidations by combining adjacent
5131
chunks before freeing, which will occur often if allocated
5132
with ialloc or the array is sorted.
5133
*/
5134
static size_t internal_bulk_free(mstate m, void* array[], size_t nelem) {
5135
size_t unfreed = 0;
5136
if (!PREACTION(m)) {
5137
void** a;
5138
void** fence = &(array[nelem]);
5139
for (a = array; a != fence; ++a) {
5140
void* mem = *a;
5141
if (mem != 0) {
5142
mchunkptr p = mem2chunk(mem);
5143
size_t psize = chunksize(p);
5144
#if FOOTERS
5145
if (get_mstate_for(p) != m) {
5146
++unfreed;
5147
continue;
5148
}
5149
#endif
5150
check_inuse_chunk(m, p);
5151
*a = 0;
5152
if (RTCHECK(ok_address(m, p) && ok_inuse(p))) {
5153
void ** b = a + 1; /* try to merge with next chunk */
5154
mchunkptr next = next_chunk(p);
5155
if (b != fence && *b == chunk2mem(next)) {
5156
size_t newsize = chunksize(next) + psize;
5157
set_inuse(m, p, newsize);
5158
*b = chunk2mem(p);
5159
}
5160
else
5161
dispose_chunk(m, p, psize);
5162
}
5163
else {
5164
CORRUPTION_ERROR_ACTION(m);
5165
break;
5166
}
5167
}
5168
}
5169
if (should_trim(m, m->topsize))
5170
sys_trim(m, 0);
5171
POSTACTION(m);
5172
}
5173
return unfreed;
5174
}
5175
5176
/* Traversal */
5177
#if MALLOC_INSPECT_ALL
5178
static void internal_inspect_all(mstate m,
5179
void(*handler)(void *start,
5180
void *end,
5181
size_t used_bytes,
5182
void* callback_arg),
5183
void* arg) {
5184
if (is_initialized(m)) {
5185
mchunkptr top = m->top;
5186
msegmentptr s;
5187
for (s = &m->seg; s != 0; s = s->next) {
5188
mchunkptr q = align_as_chunk(s->base);
5189
while (segment_holds(s, q) && q->head != FENCEPOST_HEAD) {
5190
mchunkptr next = next_chunk(q);
5191
size_t sz = chunksize(q);
5192
size_t used;
5193
void* start;
5194
if (is_inuse(q)) {
5195
used = sz - CHUNK_OVERHEAD; /* must not be mmapped */
5196
start = chunk2mem(q);
5197
}
5198
else {
5199
used = 0;
5200
if (is_small(sz)) { /* offset by possible bookkeeping */
5201
start = (void*)((char*)q + sizeof(struct malloc_chunk));
5202
}
5203
else {
5204
start = (void*)((char*)q + sizeof(struct malloc_tree_chunk));
5205
}
5206
}
5207
if (start < (void*)next) /* skip if all space is bookkeeping */
5208
handler(start, next, used, arg);
5209
if (q == top)
5210
break;
5211
q = next;
5212
}
5213
}
5214
}
5215
}
5216
#endif /* MALLOC_INSPECT_ALL */
5217
5218
/* ------------------ Exported realloc, memalign, etc -------------------- */
5219
5220
#if !ONLY_MSPACES
5221
5222
void* dlrealloc(void* oldmem, size_t bytes) {
5223
void* mem = 0;
5224
if (oldmem == 0) {
5225
mem = dlmalloc(bytes);
5226
}
5227
else if (bytes >= MAX_REQUEST) {
5228
MALLOC_FAILURE_ACTION;
5229
}
5230
#ifdef REALLOC_ZERO_BYTES_FREES
5231
else if (bytes == 0) {
5232
dlfree(oldmem);
5233
}
5234
#endif /* REALLOC_ZERO_BYTES_FREES */
5235
else {
5236
size_t nb = request2size(bytes);
5237
mchunkptr oldp = mem2chunk(oldmem);
5238
#if ! FOOTERS
5239
mstate m = gm;
5240
#else /* FOOTERS */
5241
mstate m = get_mstate_for(oldp);
5242
if (!ok_magic(m)) {
5243
USAGE_ERROR_ACTION(m, oldmem);
5244
return 0;
5245
}
5246
#endif /* FOOTERS */
5247
if (!PREACTION(m)) {
5248
mchunkptr newp = try_realloc_chunk(m, oldp, nb, 1);
5249
POSTACTION(m);
5250
if (newp != 0) {
5251
check_inuse_chunk(m, newp);
5252
mem = chunk2mem(newp);
5253
}
5254
else {
5255
mem = internal_malloc(m, bytes);
5256
if (mem != 0) {
5257
size_t oc = chunksize(oldp) - overhead_for(oldp);
5258
memcpy(mem, oldmem, (oc < bytes)? oc : bytes);
5259
internal_free(m, oldmem);
5260
}
5261
}
5262
}
5263
}
5264
return mem;
5265
}
5266
5267
void* dlrealloc_in_place(void* oldmem, size_t bytes) {
5268
void* mem = 0;
5269
if (oldmem != 0) {
5270
if (bytes >= MAX_REQUEST) {
5271
MALLOC_FAILURE_ACTION;
5272
}
5273
else {
5274
size_t nb = request2size(bytes);
5275
mchunkptr oldp = mem2chunk(oldmem);
5276
#if ! FOOTERS
5277
mstate m = gm;
5278
#else /* FOOTERS */
5279
mstate m = get_mstate_for(oldp);
5280
if (!ok_magic(m)) {
5281
USAGE_ERROR_ACTION(m, oldmem);
5282
return 0;
5283
}
5284
#endif /* FOOTERS */
5285
if (!PREACTION(m)) {
5286
mchunkptr newp = try_realloc_chunk(m, oldp, nb, 0);
5287
POSTACTION(m);
5288
if (newp == oldp) {
5289
check_inuse_chunk(m, newp);
5290
mem = oldmem;
5291
}
5292
}
5293
}
5294
}
5295
return mem;
5296
}
5297
5298
void* dlmemalign(size_t alignment, size_t bytes) {
5299
if (alignment <= MALLOC_ALIGNMENT) {
5300
return dlmalloc(bytes);
5301
}
5302
return internal_memalign(gm, alignment, bytes);
5303
}
5304
5305
int dlposix_memalign(void** pp, size_t alignment, size_t bytes) {
5306
void* mem = 0;
5307
if (alignment == MALLOC_ALIGNMENT)
5308
mem = dlmalloc(bytes);
5309
else {
5310
size_t d = alignment / sizeof(void*);
5311
size_t r = alignment % sizeof(void*);
5312
if (r != 0 || d == 0 || (d & (d-SIZE_T_ONE)) != 0)
5313
return EINVAL;
5314
else if (bytes <= MAX_REQUEST - alignment) {
5315
if (alignment < MIN_CHUNK_SIZE)
5316
alignment = MIN_CHUNK_SIZE;
5317
mem = internal_memalign(gm, alignment, bytes);
5318
}
5319
}
5320
if (mem == 0)
5321
return ENOMEM;
5322
else {
5323
*pp = mem;
5324
return 0;
5325
}
5326
}
5327
5328
void* dlvalloc(size_t bytes) {
5329
size_t pagesz;
5330
ensure_initialization();
5331
pagesz = mparams.page_size;
5332
return dlmemalign(pagesz, bytes);
5333
}
5334
5335
void* dlpvalloc(size_t bytes) {
5336
size_t pagesz;
5337
ensure_initialization();
5338
pagesz = mparams.page_size;
5339
return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE));
5340
}
5341
5342
void** dlindependent_calloc(size_t n_elements, size_t elem_size,
5343
void* chunks[]) {
5344
size_t sz = elem_size; /* serves as 1-element array */
5345
return ialloc(gm, n_elements, &sz, 3, chunks);
5346
}
5347
5348
void** dlindependent_comalloc(size_t n_elements, size_t sizes[],
5349
void* chunks[]) {
5350
return ialloc(gm, n_elements, sizes, 0, chunks);
5351
}
5352
5353
size_t dlbulk_free(void* array[], size_t nelem) {
5354
return internal_bulk_free(gm, array, nelem);
5355
}
5356
5357
#if MALLOC_INSPECT_ALL
5358
void dlmalloc_inspect_all(void(*handler)(void *start,
5359
void *end,
5360
size_t used_bytes,
5361
void* callback_arg),
5362
void* arg) {
5363
ensure_initialization();
5364
if (!PREACTION(gm)) {
5365
internal_inspect_all(gm, handler, arg);
5366
POSTACTION(gm);
5367
}
5368
}
5369
#endif /* MALLOC_INSPECT_ALL */
5370
5371
int dlmalloc_trim(size_t pad) {
5372
int result = 0;
5373
ensure_initialization();
5374
if (!PREACTION(gm)) {
5375
result = sys_trim(gm, pad);
5376
POSTACTION(gm);
5377
}
5378
return result;
5379
}
5380
5381
size_t dlmalloc_footprint(void) {
5382
return gm->footprint;
5383
}
5384
5385
size_t dlmalloc_max_footprint(void) {
5386
return gm->max_footprint;
5387
}
5388
5389
size_t dlmalloc_footprint_limit(void) {
5390
size_t maf = gm->footprint_limit;
5391
return maf == 0 ? MAX_SIZE_T : maf;
5392
}
5393
5394
size_t dlmalloc_set_footprint_limit(size_t bytes) {
5395
size_t result; /* invert sense of 0 */
5396
if (bytes == 0)
5397
result = granularity_align(1); /* Use minimal size */
5398
if (bytes == MAX_SIZE_T)
5399
result = 0; /* disable */
5400
else
5401
result = granularity_align(bytes);
5402
return gm->footprint_limit = result;
5403
}
5404
5405
#if !NO_MALLINFO
5406
struct mallinfo dlmallinfo(void) {
5407
return internal_mallinfo(gm);
5408
}
5409
#endif /* NO_MALLINFO */
5410
5411
#if !NO_MALLOC_STATS
5412
void dlmalloc_stats() {
5413
internal_malloc_stats(gm);
5414
}
5415
#endif /* NO_MALLOC_STATS */
5416
5417
int dlmallopt(int param_number, int value) {
5418
return change_mparam(param_number, value);
5419
}
5420
5421
size_t dlmalloc_usable_size(void* mem) {
5422
if (mem != 0) {
5423
mchunkptr p = mem2chunk(mem);
5424
if (is_inuse(p))
5425
return chunksize(p) - overhead_for(p);
5426
}
5427
return 0;
5428
}
5429
5430
#endif /* !ONLY_MSPACES */
5431
5432
/* ----------------------------- user mspaces ---------------------------- */
5433
5434
#if MSPACES
5435
5436
static mstate init_user_mstate(char* tbase, size_t tsize) {
5437
size_t msize = pad_request(sizeof(struct malloc_state));
5438
mchunkptr mn;
5439
mchunkptr msp = align_as_chunk(tbase);
5440
mstate m = (mstate)(chunk2mem(msp));
5441
memset(m, 0, msize);
5442
(void)INITIAL_LOCK(&m->mutex);
5443
msp->head = (msize|INUSE_BITS);
5444
m->seg.base = m->least_addr = tbase;
5445
m->seg.size = m->footprint = m->max_footprint = tsize;
5446
m->magic = mparams.magic;
5447
m->release_checks = MAX_RELEASE_CHECK_RATE;
5448
m->mflags = mparams.default_mflags;
5449
m->extp = 0;
5450
m->exts = 0;
5451
disable_contiguous(m);
5452
init_bins(m);
5453
mn = next_chunk(mem2chunk(m));
5454
init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE);
5455
check_top_chunk(m, m->top);
5456
return m;
5457
}
5458
5459
mspace create_mspace(size_t capacity, int locked) {
5460
mstate m = 0;
5461
size_t msize;
5462
ensure_initialization();
5463
msize = pad_request(sizeof(struct malloc_state));
5464
if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
5465
size_t rs = ((capacity == 0)? mparams.granularity :
5466
(capacity + TOP_FOOT_SIZE + msize));
5467
size_t tsize = granularity_align(rs);
5468
char* tbase = (char*)(CALL_MMAP(tsize));
5469
if (tbase != CMFAIL) {
5470
m = init_user_mstate(tbase, tsize);
5471
m->seg.sflags = USE_MMAP_BIT;
5472
set_lock(m, locked);
5473
}
5474
}
5475
return (mspace)m;
5476
}
5477
5478
mspace create_mspace_with_base(void* base, size_t capacity, int locked) {
5479
mstate m = 0;
5480
size_t msize;
5481
ensure_initialization();
5482
msize = pad_request(sizeof(struct malloc_state));
5483
if (capacity > msize + TOP_FOOT_SIZE &&
5484
capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
5485
m = init_user_mstate((char*)base, capacity);
5486
m->seg.sflags = EXTERN_BIT;
5487
set_lock(m, locked);
5488
}
5489
return (mspace)m;
5490
}
5491
5492
int mspace_track_large_chunks(mspace msp, int enable) {
5493
int ret = 0;
5494
mstate ms = (mstate)msp;
5495
if (!PREACTION(ms)) {
5496
if (!use_mmap(ms)) {
5497
ret = 1;
5498
}
5499
if (!enable) {
5500
enable_mmap(ms);
5501
} else {
5502
disable_mmap(ms);
5503
}
5504
POSTACTION(ms);
5505
}
5506
return ret;
5507
}
5508
5509
size_t destroy_mspace(mspace msp) {
5510
size_t freed = 0;
5511
mstate ms = (mstate)msp;
5512
if (ok_magic(ms)) {
5513
msegmentptr sp = &ms->seg;
5514
(void)DESTROY_LOCK(&ms->mutex); /* destroy before unmapped */
5515
while (sp != 0) {
5516
char* base = sp->base;
5517
size_t size = sp->size;
5518
flag_t flag = sp->sflags;
5519
(void)base; /* placate people compiling -Wunused-variable */
5520
sp = sp->next;
5521
if ((flag & USE_MMAP_BIT) && !(flag & EXTERN_BIT) &&
5522
CALL_MUNMAP(base, size) == 0)
5523
freed += size;
5524
}
5525
}
5526
else {
5527
USAGE_ERROR_ACTION(ms,ms);
5528
}
5529
return freed;
5530
}
5531
5532
/*
5533
mspace versions of routines are near-clones of the global
5534
versions. This is not so nice but better than the alternatives.
5535
*/
5536
5537
void* mspace_malloc(mspace msp, size_t bytes) {
5538
mstate ms = (mstate)msp;
5539
if (!ok_magic(ms)) {
5540
USAGE_ERROR_ACTION(ms,ms);
5541
return 0;
5542
}
5543
if (!PREACTION(ms)) {
5544
void* mem;
5545
size_t nb;
5546
if (bytes <= MAX_SMALL_REQUEST) {
5547
bindex_t idx;
5548
binmap_t smallbits;
5549
nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
5550
idx = small_index(nb);
5551
smallbits = ms->smallmap >> idx;
5552
5553
if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
5554
mchunkptr b, p;
5555
idx += ~smallbits & 1; /* Uses next bin if idx empty */
5556
b = smallbin_at(ms, idx);
5557
p = b->fd;
5558
assert(chunksize(p) == small_index2size(idx));
5559
unlink_first_small_chunk(ms, b, p, idx);
5560
set_inuse_and_pinuse(ms, p, small_index2size(idx));
5561
mem = chunk2mem(p);
5562
check_malloced_chunk(ms, mem, nb);
5563
goto postaction;
5564
}
5565
5566
else if (nb > ms->dvsize) {
5567
if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
5568
mchunkptr b, p, r;
5569
size_t rsize;
5570
bindex_t i;
5571
binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
5572
binmap_t leastbit = least_bit(leftbits);
5573
compute_bit2idx(leastbit, i);
5574
b = smallbin_at(ms, i);
5575
p = b->fd;
5576
assert(chunksize(p) == small_index2size(i));
5577
unlink_first_small_chunk(ms, b, p, i);
5578
rsize = small_index2size(i) - nb;
5579
/* Fit here cannot be remainderless if 4byte sizes */
5580
if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
5581
set_inuse_and_pinuse(ms, p, small_index2size(i));
5582
else {
5583
set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
5584
r = chunk_plus_offset(p, nb);
5585
set_size_and_pinuse_of_free_chunk(r, rsize);
5586
replace_dv(ms, r, rsize);
5587
}
5588
mem = chunk2mem(p);
5589
check_malloced_chunk(ms, mem, nb);
5590
goto postaction;
5591
}
5592
5593
else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) {
5594
check_malloced_chunk(ms, mem, nb);
5595
goto postaction;
5596
}
5597
}
5598
}
5599
else if (bytes >= MAX_REQUEST)
5600
nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
5601
else {
5602
nb = pad_request(bytes);
5603
if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
5604
check_malloced_chunk(ms, mem, nb);
5605
goto postaction;
5606
}
5607
}
5608
5609
if (nb <= ms->dvsize) {
5610
size_t rsize = ms->dvsize - nb;
5611
mchunkptr p = ms->dv;
5612
if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
5613
mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
5614
ms->dvsize = rsize;
5615
set_size_and_pinuse_of_free_chunk(r, rsize);
5616
set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
5617
}
5618
else { /* exhaust dv */
5619
size_t dvs = ms->dvsize;
5620
ms->dvsize = 0;
5621
ms->dv = 0;
5622
set_inuse_and_pinuse(ms, p, dvs);
5623
}
5624
mem = chunk2mem(p);
5625
check_malloced_chunk(ms, mem, nb);
5626
goto postaction;
5627
}
5628
5629
else if (nb < ms->topsize) { /* Split top */
5630
size_t rsize = ms->topsize -= nb;
5631
mchunkptr p = ms->top;
5632
mchunkptr r = ms->top = chunk_plus_offset(p, nb);
5633
r->head = rsize | PINUSE_BIT;
5634
set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
5635
mem = chunk2mem(p);
5636
check_top_chunk(ms, ms->top);
5637
check_malloced_chunk(ms, mem, nb);
5638
goto postaction;
5639
}
5640
5641
mem = sys_alloc(ms, nb);
5642
5643
postaction:
5644
POSTACTION(ms);
5645
return mem;
5646
}
5647
5648
return 0;
5649
}
5650
5651
void mspace_free(mspace msp, void* mem) {
5652
if (mem != 0) {
5653
mchunkptr p = mem2chunk(mem);
5654
#if FOOTERS
5655
mstate fm = get_mstate_for(p);
5656
(void)msp; /* placate people compiling -Wunused */
5657
#else /* FOOTERS */
5658
mstate fm = (mstate)msp;
5659
#endif /* FOOTERS */
5660
if (!ok_magic(fm)) {
5661
USAGE_ERROR_ACTION(fm, p);
5662
return;
5663
}
5664
if (!PREACTION(fm)) {
5665
check_inuse_chunk(fm, p);
5666
if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) {
5667
size_t psize = chunksize(p);
5668
mchunkptr next = chunk_plus_offset(p, psize);
5669
if (!pinuse(p)) {
5670
size_t prevsize = p->prev_foot;
5671
if (is_mmapped(p)) {
5672
psize += prevsize + MMAP_FOOT_PAD;
5673
if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
5674
fm->footprint -= psize;
5675
goto postaction;
5676
}
5677
else {
5678
mchunkptr prev = chunk_minus_offset(p, prevsize);
5679
psize += prevsize;
5680
p = prev;
5681
if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
5682
if (p != fm->dv) {
5683
unlink_chunk(fm, p, prevsize);
5684
}
5685
else if ((next->head & INUSE_BITS) == INUSE_BITS) {
5686
fm->dvsize = psize;
5687
set_free_with_pinuse(p, psize, next);
5688
goto postaction;
5689
}
5690
}
5691
else
5692
goto erroraction;
5693
}
5694
}
5695
5696
if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
5697
if (!cinuse(next)) { /* consolidate forward */
5698
if (next == fm->top) {
5699
size_t tsize = fm->topsize += psize;
5700
fm->top = p;
5701
p->head = tsize | PINUSE_BIT;
5702
if (p == fm->dv) {
5703
fm->dv = 0;
5704
fm->dvsize = 0;
5705
}
5706
if (should_trim(fm, tsize))
5707
sys_trim(fm, 0);
5708
goto postaction;
5709
}
5710
else if (next == fm->dv) {
5711
size_t dsize = fm->dvsize += psize;
5712
fm->dv = p;
5713
set_size_and_pinuse_of_free_chunk(p, dsize);
5714
goto postaction;
5715
}
5716
else {
5717
size_t nsize = chunksize(next);
5718
psize += nsize;
5719
unlink_chunk(fm, next, nsize);
5720
set_size_and_pinuse_of_free_chunk(p, psize);
5721
if (p == fm->dv) {
5722
fm->dvsize = psize;
5723
goto postaction;
5724
}
5725
}
5726
}
5727
else
5728
set_free_with_pinuse(p, psize, next);
5729
5730
if (is_small(psize)) {
5731
insert_small_chunk(fm, p, psize);
5732
check_free_chunk(fm, p);
5733
}
5734
else {
5735
tchunkptr tp = (tchunkptr)p;
5736
insert_large_chunk(fm, tp, psize);
5737
check_free_chunk(fm, p);
5738
if (--fm->release_checks == 0)
5739
release_unused_segments(fm);
5740
}
5741
goto postaction;
5742
}
5743
}
5744
erroraction:
5745
USAGE_ERROR_ACTION(fm, p);
5746
postaction:
5747
POSTACTION(fm);
5748
}
5749
}
5750
}
5751
5752
void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) {
5753
void* mem;
5754
size_t req = 0;
5755
mstate ms = (mstate)msp;
5756
if (!ok_magic(ms)) {
5757
USAGE_ERROR_ACTION(ms,ms);
5758
return 0;
5759
}
5760
if (n_elements != 0) {
5761
req = n_elements * elem_size;
5762
if (((n_elements | elem_size) & ~(size_t)0xffff) &&
5763
(req / n_elements != elem_size))
5764
req = MAX_SIZE_T; /* force downstream failure on overflow */
5765
}
5766
mem = internal_malloc(ms, req);
5767
if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
5768
memset(mem, 0, req);
5769
return mem;
5770
}
5771
5772
void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) {
5773
void* mem = 0;
5774
if (oldmem == 0) {
5775
mem = mspace_malloc(msp, bytes);
5776
}
5777
else if (bytes >= MAX_REQUEST) {
5778
MALLOC_FAILURE_ACTION;
5779
}
5780
#ifdef REALLOC_ZERO_BYTES_FREES
5781
else if (bytes == 0) {
5782
mspace_free(msp, oldmem);
5783
}
5784
#endif /* REALLOC_ZERO_BYTES_FREES */
5785
else {
5786
size_t nb = request2size(bytes);
5787
mchunkptr oldp = mem2chunk(oldmem);
5788
#if ! FOOTERS
5789
mstate m = (mstate)msp;
5790
#else /* FOOTERS */
5791
mstate m = get_mstate_for(oldp);
5792
if (!ok_magic(m)) {
5793
USAGE_ERROR_ACTION(m, oldmem);
5794
return 0;
5795
}
5796
#endif /* FOOTERS */
5797
if (!PREACTION(m)) {
5798
mchunkptr newp = try_realloc_chunk(m, oldp, nb, 1);
5799
POSTACTION(m);
5800
if (newp != 0) {
5801
check_inuse_chunk(m, newp);
5802
mem = chunk2mem(newp);
5803
}
5804
else {
5805
mem = mspace_malloc(m, bytes);
5806
if (mem != 0) {
5807
size_t oc = chunksize(oldp) - overhead_for(oldp);
5808
memcpy(mem, oldmem, (oc < bytes)? oc : bytes);
5809
mspace_free(m, oldmem);
5810
}
5811
}
5812
}
5813
}
5814
return mem;
5815
}
5816
5817
void* mspace_realloc_in_place(mspace msp, void* oldmem, size_t bytes) {
5818
void* mem = 0;
5819
if (oldmem != 0) {
5820
if (bytes >= MAX_REQUEST) {
5821
MALLOC_FAILURE_ACTION;
5822
}
5823
else {
5824
size_t nb = request2size(bytes);
5825
mchunkptr oldp = mem2chunk(oldmem);
5826
#if ! FOOTERS
5827
mstate m = (mstate)msp;
5828
#else /* FOOTERS */
5829
mstate m = get_mstate_for(oldp);
5830
(void)msp; /* placate people compiling -Wunused */
5831
if (!ok_magic(m)) {
5832
USAGE_ERROR_ACTION(m, oldmem);
5833
return 0;
5834
}
5835
#endif /* FOOTERS */
5836
if (!PREACTION(m)) {
5837
mchunkptr newp = try_realloc_chunk(m, oldp, nb, 0);
5838
POSTACTION(m);
5839
if (newp == oldp) {
5840
check_inuse_chunk(m, newp);
5841
mem = oldmem;
5842
}
5843
}
5844
}
5845
}
5846
return mem;
5847
}
5848
5849
void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) {
5850
mstate ms = (mstate)msp;
5851
if (!ok_magic(ms)) {
5852
USAGE_ERROR_ACTION(ms,ms);
5853
return 0;
5854
}
5855
if (alignment <= MALLOC_ALIGNMENT)
5856
return mspace_malloc(msp, bytes);
5857
return internal_memalign(ms, alignment, bytes);
5858
}
5859
5860
void** mspace_independent_calloc(mspace msp, size_t n_elements,
5861
size_t elem_size, void* chunks[]) {
5862
size_t sz = elem_size; /* serves as 1-element array */
5863
mstate ms = (mstate)msp;
5864
if (!ok_magic(ms)) {
5865
USAGE_ERROR_ACTION(ms,ms);
5866
return 0;
5867
}
5868
return ialloc(ms, n_elements, &sz, 3, chunks);
5869
}
5870
5871
void** mspace_independent_comalloc(mspace msp, size_t n_elements,
5872
size_t sizes[], void* chunks[]) {
5873
mstate ms = (mstate)msp;
5874
if (!ok_magic(ms)) {
5875
USAGE_ERROR_ACTION(ms,ms);
5876
return 0;
5877
}
5878
return ialloc(ms, n_elements, sizes, 0, chunks);
5879
}
5880
5881
size_t mspace_bulk_free(mspace msp, void* array[], size_t nelem) {
5882
return internal_bulk_free((mstate)msp, array, nelem);
5883
}
5884
5885
#if MALLOC_INSPECT_ALL
5886
void mspace_inspect_all(mspace msp,
5887
void(*handler)(void *start,
5888
void *end,
5889
size_t used_bytes,
5890
void* callback_arg),
5891
void* arg) {
5892
mstate ms = (mstate)msp;
5893
if (ok_magic(ms)) {
5894
if (!PREACTION(ms)) {
5895
internal_inspect_all(ms, handler, arg);
5896
POSTACTION(ms);
5897
}
5898
}
5899
else {
5900
USAGE_ERROR_ACTION(ms,ms);
5901
}
5902
}
5903
#endif /* MALLOC_INSPECT_ALL */
5904
5905
int mspace_trim(mspace msp, size_t pad) {
5906
int result = 0;
5907
mstate ms = (mstate)msp;
5908
if (ok_magic(ms)) {
5909
if (!PREACTION(ms)) {
5910
result = sys_trim(ms, pad);
5911
POSTACTION(ms);
5912
}
5913
}
5914
else {
5915
USAGE_ERROR_ACTION(ms,ms);
5916
}
5917
return result;
5918
}
5919
5920
#if !NO_MALLOC_STATS
5921
void mspace_malloc_stats(mspace msp) {
5922
mstate ms = (mstate)msp;
5923
if (ok_magic(ms)) {
5924
internal_malloc_stats(ms);
5925
}
5926
else {
5927
USAGE_ERROR_ACTION(ms,ms);
5928
}
5929
}
5930
#endif /* NO_MALLOC_STATS */
5931
5932
size_t mspace_footprint(mspace msp) {
5933
size_t result = 0;
5934
mstate ms = (mstate)msp;
5935
if (ok_magic(ms)) {
5936
result = ms->footprint;
5937
}
5938
else {
5939
USAGE_ERROR_ACTION(ms,ms);
5940
}
5941
return result;
5942
}
5943
5944
size_t mspace_max_footprint(mspace msp) {
5945
size_t result = 0;
5946
mstate ms = (mstate)msp;
5947
if (ok_magic(ms)) {
5948
result = ms->max_footprint;
5949
}
5950
else {
5951
USAGE_ERROR_ACTION(ms,ms);
5952
}
5953
return result;
5954
}
5955
5956
size_t mspace_footprint_limit(mspace msp) {
5957
size_t result = 0;
5958
mstate ms = (mstate)msp;
5959
if (ok_magic(ms)) {
5960
size_t maf = ms->footprint_limit;
5961
result = (maf == 0) ? MAX_SIZE_T : maf;
5962
}
5963
else {
5964
USAGE_ERROR_ACTION(ms,ms);
5965
}
5966
return result;
5967
}
5968
5969
size_t mspace_set_footprint_limit(mspace msp, size_t bytes) {
5970
size_t result = 0;
5971
mstate ms = (mstate)msp;
5972
if (ok_magic(ms)) {
5973
if (bytes == 0)
5974
result = granularity_align(1); /* Use minimal size */
5975
if (bytes == MAX_SIZE_T)
5976
result = 0; /* disable */
5977
else
5978
result = granularity_align(bytes);
5979
ms->footprint_limit = result;
5980
}
5981
else {
5982
USAGE_ERROR_ACTION(ms,ms);
5983
}
5984
return result;
5985
}
5986
5987
#if !NO_MALLINFO
5988
struct mallinfo mspace_mallinfo(mspace msp) {
5989
mstate ms = (mstate)msp;
5990
if (!ok_magic(ms)) {
5991
USAGE_ERROR_ACTION(ms,ms);
5992
}
5993
return internal_mallinfo(ms);
5994
}
5995
#endif /* NO_MALLINFO */
5996
5997
size_t mspace_usable_size(const void* mem) {
5998
if (mem != 0) {
5999
mchunkptr p = mem2chunk(mem);
6000
if (is_inuse(p))
6001
return chunksize(p) - overhead_for(p);
6002
}
6003
return 0;
6004
}
6005
6006
int mspace_mallopt(int param_number, int value) {
6007
return change_mparam(param_number, value);
6008
}
6009
6010
#endif /* MSPACES */
6011
6012
6013
/* -------------------- Alternative MORECORE functions ------------------- */
6014
6015
/*
6016
Guidelines for creating a custom version of MORECORE:
6017
6018
* For best performance, MORECORE should allocate in multiples of pagesize.
6019
* MORECORE may allocate more memory than requested. (Or even less,
6020
but this will usually result in a malloc failure.)
6021
* MORECORE must not allocate memory when given argument zero, but
6022
instead return one past the end address of memory from previous
6023
nonzero call.
6024
* For best performance, consecutive calls to MORECORE with positive
6025
arguments should return increasing addresses, indicating that
6026
space has been contiguously extended.
6027
* Even though consecutive calls to MORECORE need not return contiguous
6028
addresses, it must be OK for malloc'ed chunks to span multiple
6029
regions in those cases where they do happen to be contiguous.
6030
* MORECORE need not handle negative arguments -- it may instead
6031
just return MFAIL when given negative arguments.
6032
Negative arguments are always multiples of pagesize. MORECORE
6033
must not misinterpret negative args as large positive unsigned
6034
args. You can suppress all such calls from even occurring by defining
6035
MORECORE_CANNOT_TRIM,
6036
6037
As an example alternative MORECORE, here is a custom allocator
6038
kindly contributed for pre-OSX macOS. It uses virtually but not
6039
necessarily physically contiguous non-paged memory (locked in,
6040
present and won't get swapped out). You can use it by uncommenting
6041
this section, adding some #includes, and setting up the appropriate
6042
defines above:
6043
6044
#define MORECORE osMoreCore
6045
6046
There is also a shutdown routine that should somehow be called for
6047
cleanup upon program exit.
6048
6049
#define MAX_POOL_ENTRIES 100
6050
#define MINIMUM_MORECORE_SIZE (64 * 1024U)
6051
static int next_os_pool;
6052
void *our_os_pools[MAX_POOL_ENTRIES];
6053
6054
void *osMoreCore(int size)
6055
{
6056
void *ptr = 0;
6057
static void *sbrk_top = 0;
6058
6059
if (size > 0)
6060
{
6061
if (size < MINIMUM_MORECORE_SIZE)
6062
size = MINIMUM_MORECORE_SIZE;
6063
if (CurrentExecutionLevel() == kTaskLevel)
6064
ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
6065
if (ptr == 0)
6066
{
6067
return (void *) MFAIL;
6068
}
6069
// save ptrs so they can be freed during cleanup
6070
our_os_pools[next_os_pool] = ptr;
6071
next_os_pool++;
6072
ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
6073
sbrk_top = (char *) ptr + size;
6074
return ptr;
6075
}
6076
else if (size < 0)
6077
{
6078
// we don't currently support shrink behavior
6079
return (void *) MFAIL;
6080
}
6081
else
6082
{
6083
return sbrk_top;
6084
}
6085
}
6086
6087
// cleanup any allocated memory pools
6088
// called as last thing before shutting down driver
6089
6090
void osCleanupMem(void)
6091
{
6092
void **ptr;
6093
6094
for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
6095
if (*ptr)
6096
{
6097
PoolDeallocate(*ptr);
6098
*ptr = 0;
6099
}
6100
}
6101
6102
*/
6103
6104
6105
/* -----------------------------------------------------------------------
6106
History:
6107
v2.8.6 Wed Aug 29 06:57:58 2012 Doug Lea
6108
* fix bad comparison in dlposix_memalign
6109
* don't reuse adjusted asize in sys_alloc
6110
* add LOCK_AT_FORK -- thanks to Kirill Artamonov for the suggestion
6111
* reduce compiler warnings -- thanks to all who reported/suggested these
6112
6113
v2.8.5 Sun May 22 10:26:02 2011 Doug Lea (dl at gee)
6114
* Always perform unlink checks unless INSECURE
6115
* Add posix_memalign.
6116
* Improve realloc to expand in more cases; expose realloc_in_place.
6117
Thanks to Peter Buhr for the suggestion.
6118
* Add footprint_limit, inspect_all, bulk_free. Thanks
6119
to Barry Hayes and others for the suggestions.
6120
* Internal refactorings to avoid calls while holding locks
6121
* Use non-reentrant locks by default. Thanks to Roland McGrath
6122
for the suggestion.
6123
* Small fixes to mspace_destroy, reset_on_error.
6124
* Various configuration extensions/changes. Thanks
6125
to all who contributed these.
6126
6127
V2.8.4a Thu Apr 28 14:39:43 2011 (dl at gee.cs.oswego.edu)
6128
* Update Creative Commons URL
6129
6130
V2.8.4 Wed May 27 09:56:23 2009 Doug Lea (dl at gee)
6131
* Use zeros instead of prev foot for is_mmapped
6132
* Add mspace_track_large_chunks; thanks to Jean Brouwers
6133
* Fix set_inuse in internal_realloc; thanks to Jean Brouwers
6134
* Fix insufficient sys_alloc padding when using 16byte alignment
6135
* Fix bad error check in mspace_footprint
6136
* Adaptations for ptmalloc; thanks to Wolfram Gloger.
6137
* Reentrant spin locks; thanks to Earl Chew and others
6138
* Win32 improvements; thanks to Niall Douglas and Earl Chew
6139
* Add NO_SEGMENT_TRAVERSAL and MAX_RELEASE_CHECK_RATE options
6140
* Extension hook in malloc_state
6141
* Various small adjustments to reduce warnings on some compilers
6142
* Various configuration extensions/changes for more platforms. Thanks
6143
to all who contributed these.
6144
6145
V2.8.3 Thu Sep 22 11:16:32 2005 Doug Lea (dl at gee)
6146
* Add max_footprint functions
6147
* Ensure all appropriate literals are size_t
6148
* Fix conditional compilation problem for some #define settings
6149
* Avoid concatenating segments with the one provided
6150
in create_mspace_with_base
6151
* Rename some variables to avoid compiler shadowing warnings
6152
* Use explicit lock initialization.
6153
* Better handling of sbrk interference.
6154
* Simplify and fix segment insertion, trimming and mspace_destroy
6155
* Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x
6156
* Thanks especially to Dennis Flanagan for help on these.
6157
6158
V2.8.2 Sun Jun 12 16:01:10 2005 Doug Lea (dl at gee)
6159
* Fix memalign brace error.
6160
6161
V2.8.1 Wed Jun 8 16:11:46 2005 Doug Lea (dl at gee)
6162
* Fix improper #endif nesting in C++
6163
* Add explicit casts needed for C++
6164
6165
V2.8.0 Mon May 30 14:09:02 2005 Doug Lea (dl at gee)
6166
* Use trees for large bins
6167
* Support mspaces
6168
* Use segments to unify sbrk-based and mmap-based system allocation,
6169
removing need for emulation on most platforms without sbrk.
6170
* Default safety checks
6171
* Optional footer checks. Thanks to William Robertson for the idea.
6172
* Internal code refactoring
6173
* Incorporate suggestions and platform-specific changes.
6174
Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas,
6175
Aaron Bachmann, Emery Berger, and others.
6176
* Speed up non-fastbin processing enough to remove fastbins.
6177
* Remove useless cfree() to avoid conflicts with other apps.
6178
* Remove internal memcpy, memset. Compilers handle builtins better.
6179
* Remove some options that no one ever used and rename others.
6180
6181
V2.7.2 Sat Aug 17 09:07:30 2002 Doug Lea (dl at gee)
6182
* Fix malloc_state bitmap array misdeclaration
6183
6184
V2.7.1 Thu Jul 25 10:58:03 2002 Doug Lea (dl at gee)
6185
* Allow tuning of FIRST_SORTED_BIN_SIZE
6186
* Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte.
6187
* Better detection and support for non-contiguousness of MORECORE.
6188
Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger
6189
* Bypass most of malloc if no frees. Thanks To Emery Berger.
6190
* Fix freeing of old top non-contiguous chunk im sysmalloc.
6191
* Raised default trim and map thresholds to 256K.
6192
* Fix mmap-related #defines. Thanks to Lubos Lunak.
6193
* Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield.
6194
* Branch-free bin calculation
6195
* Default trim and mmap thresholds now 256K.
6196
6197
V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
6198
* Introduce independent_comalloc and independent_calloc.
6199
Thanks to Michael Pachos for motivation and help.
6200
* Make optional .h file available
6201
* Allow > 2GB requests on 32bit systems.
6202
* new WIN32 sbrk, mmap, munmap, lock code from <[email protected]>.
6203
Thanks also to Andreas Mueller <a.mueller at paradatec.de>,
6204
and Anonymous.
6205
* Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for
6206
helping test this.)
6207
* memalign: check alignment arg
6208
* realloc: don't try to shift chunks backwards, since this
6209
leads to more fragmentation in some programs and doesn't
6210
seem to help in any others.
6211
* Collect all cases in malloc requiring system memory into sysmalloc
6212
* Use mmap as backup to sbrk
6213
* Place all internal state in malloc_state
6214
* Introduce fastbins (although similar to 2.5.1)
6215
* Many minor tunings and cosmetic improvements
6216
* Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK
6217
* Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS
6218
Thanks to Tony E. Bennett <[email protected]> and others.
6219
* Include errno.h to support default failure action.
6220
6221
V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
6222
* return null for negative arguments
6223
* Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com>
6224
* Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
6225
(e.g. WIN32 platforms)
6226
* Cleanup header file inclusion for WIN32 platforms
6227
* Cleanup code to avoid Microsoft Visual C++ compiler complaints
6228
* Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
6229
memory allocation routines
6230
* Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
6231
* Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
6232
usage of 'assert' in non-WIN32 code
6233
* Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
6234
avoid infinite loop
6235
* Always call 'fREe()' rather than 'free()'
6236
6237
V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
6238
* Fixed ordering problem with boundary-stamping
6239
6240
V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
6241
* Added pvalloc, as recommended by H.J. Liu
6242
* Added 64bit pointer support mainly from Wolfram Gloger
6243
* Added anonymously donated WIN32 sbrk emulation
6244
* Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
6245
* malloc_extend_top: fix mask error that caused wastage after
6246
foreign sbrks
6247
* Add linux mremap support code from HJ Liu
6248
6249
V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
6250
* Integrated most documentation with the code.
6251
* Add support for mmap, with help from
6252
Wolfram Gloger ([email protected]).
6253
* Use last_remainder in more cases.
6254
* Pack bins using idea from [email protected]
6255
* Use ordered bins instead of best-fit threshhold
6256
* Eliminate block-local decls to simplify tracing and debugging.
6257
* Support another case of realloc via move into top
6258
* Fix error occuring when initial sbrk_base not word-aligned.
6259
* Rely on page size for units instead of SBRK_UNIT to
6260
avoid surprises about sbrk alignment conventions.
6261
* Add mallinfo, mallopt. Thanks to Raymond Nijssen
6262
([email protected]) for the suggestion.
6263
* Add `pad' argument to malloc_trim and top_pad mallopt parameter.
6264
* More precautions for cases where other routines call sbrk,
6265
courtesy of Wolfram Gloger ([email protected]).
6266
* Added macros etc., allowing use in linux libc from
6267
H.J. Lu ([email protected])
6268
* Inverted this history list
6269
6270
V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
6271
* Re-tuned and fixed to behave more nicely with V2.6.0 changes.
6272
* Removed all preallocation code since under current scheme
6273
the work required to undo bad preallocations exceeds
6274
the work saved in good cases for most test programs.
6275
* No longer use return list or unconsolidated bins since
6276
no scheme using them consistently outperforms those that don't
6277
given above changes.
6278
* Use best fit for very large chunks to prevent some worst-cases.
6279
* Added some support for debugging
6280
6281
V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
6282
* Removed footers when chunks are in use. Thanks to
6283
Paul Wilson ([email protected]) for the suggestion.
6284
6285
V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
6286
* Added malloc_trim, with help from Wolfram Gloger
6287
([email protected]).
6288
6289
V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
6290
6291
V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
6292
* realloc: try to expand in both directions
6293
* malloc: swap order of clean-bin strategy;
6294
* realloc: only conditionally expand backwards
6295
* Try not to scavenge used bins
6296
* Use bin counts as a guide to preallocation
6297
* Occasionally bin return list chunks in first scan
6298
* Add a few optimizations from [email protected]
6299
6300
V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
6301
* faster bin computation & slightly different binning
6302
* merged all consolidations to one part of malloc proper
6303
(eliminating old malloc_find_space & malloc_clean_bin)
6304
* Scan 2 returns chunks (not just 1)
6305
* Propagate failure in realloc if malloc returns 0
6306
* Add stuff to allow compilation on non-ANSI compilers
6307
from [email protected]
6308
6309
V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
6310
* removed potential for odd address access in prev_chunk
6311
* removed dependency on getpagesize.h
6312
* misc cosmetics and a bit more internal documentation
6313
* anticosmetics: mangled names in macros to evade debugger strangeness
6314
* tested on sparc, hp-700, dec-mips, rs6000
6315
with gcc & native cc (hp, dec only) allowing
6316
Detlefs & Zorn comparison study (in SIGPLAN Notices.)
6317
6318
Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
6319
* Based loosely on libg++-1.2X malloc. (It retains some of the overall
6320
structure of old version, but most details differ.)
6321
6322
*/
6323
6324
#endif /* !HAVE_MALLOC */
6325
6326
#ifdef HAVE_MALLOC
6327
static void * SDLCALL real_malloc(size_t s) { return malloc(s); }
6328
static void * SDLCALL real_calloc(size_t n, size_t s) { return calloc(n, s); }
6329
static void * SDLCALL real_realloc(void *p, size_t s) { return realloc(p,s); }
6330
static void SDLCALL real_free(void *p) { free(p); }
6331
#else
6332
#define real_malloc dlmalloc
6333
#define real_calloc dlcalloc
6334
#define real_realloc dlrealloc
6335
#define real_free dlfree
6336
#endif
6337
6338
// mark the allocator entry points as KEEPALIVE so we can call these from JavaScript.
6339
// otherwise they could could get so aggressively inlined that their symbols
6340
// don't exist at all in the final binary!
6341
#ifdef SDL_PLATFORM_EMSCRIPTEN
6342
#include <emscripten/emscripten.h>
6343
extern SDL_DECLSPEC SDL_MALLOC EMSCRIPTEN_KEEPALIVE void * SDLCALL SDL_malloc(size_t size);
6344
extern SDL_DECLSPEC SDL_MALLOC SDL_ALLOC_SIZE2(1, 2) EMSCRIPTEN_KEEPALIVE void * SDLCALL SDL_calloc(size_t nmemb, size_t size);
6345
extern SDL_DECLSPEC SDL_ALLOC_SIZE(2) EMSCRIPTEN_KEEPALIVE void * SDLCALL SDL_realloc(void *mem, size_t size);
6346
extern SDL_DECLSPEC EMSCRIPTEN_KEEPALIVE void SDLCALL SDL_free(void *mem);
6347
#endif
6348
6349
/* Memory functions used by SDL that can be replaced by the application */
6350
static struct
6351
{
6352
SDL_malloc_func malloc_func;
6353
SDL_calloc_func calloc_func;
6354
SDL_realloc_func realloc_func;
6355
SDL_free_func free_func;
6356
SDL_AtomicInt num_allocations;
6357
} s_mem = {
6358
real_malloc, real_calloc, real_realloc, real_free, { 0 }
6359
};
6360
6361
// Define this if you want to track the number of allocations active
6362
// #define SDL_TRACK_ALLOCATION_COUNT
6363
#ifdef SDL_TRACK_ALLOCATION_COUNT
6364
#define INCREMENT_ALLOCATION_COUNT() (void)SDL_AtomicIncRef(&s_mem.num_allocations)
6365
#define DECREMENT_ALLOCATION_COUNT() (void)SDL_AtomicDecRef(&s_mem.num_allocations)
6366
#else
6367
#define INCREMENT_ALLOCATION_COUNT()
6368
#define DECREMENT_ALLOCATION_COUNT()
6369
#endif
6370
6371
6372
void SDL_GetOriginalMemoryFunctions(SDL_malloc_func *malloc_func,
6373
SDL_calloc_func *calloc_func,
6374
SDL_realloc_func *realloc_func,
6375
SDL_free_func *free_func)
6376
{
6377
if (malloc_func) {
6378
*malloc_func = real_malloc;
6379
}
6380
if (calloc_func) {
6381
*calloc_func = real_calloc;
6382
}
6383
if (realloc_func) {
6384
*realloc_func = real_realloc;
6385
}
6386
if (free_func) {
6387
*free_func = real_free;
6388
}
6389
}
6390
6391
void SDL_GetMemoryFunctions(SDL_malloc_func *malloc_func,
6392
SDL_calloc_func *calloc_func,
6393
SDL_realloc_func *realloc_func,
6394
SDL_free_func *free_func)
6395
{
6396
if (malloc_func) {
6397
*malloc_func = s_mem.malloc_func;
6398
}
6399
if (calloc_func) {
6400
*calloc_func = s_mem.calloc_func;
6401
}
6402
if (realloc_func) {
6403
*realloc_func = s_mem.realloc_func;
6404
}
6405
if (free_func) {
6406
*free_func = s_mem.free_func;
6407
}
6408
}
6409
6410
bool SDL_SetMemoryFunctions(SDL_malloc_func malloc_func,
6411
SDL_calloc_func calloc_func,
6412
SDL_realloc_func realloc_func,
6413
SDL_free_func free_func)
6414
{
6415
if (!malloc_func) {
6416
return SDL_InvalidParamError("malloc_func");
6417
}
6418
if (!calloc_func) {
6419
return SDL_InvalidParamError("calloc_func");
6420
}
6421
if (!realloc_func) {
6422
return SDL_InvalidParamError("realloc_func");
6423
}
6424
if (!free_func) {
6425
return SDL_InvalidParamError("free_func");
6426
}
6427
6428
s_mem.malloc_func = malloc_func;
6429
s_mem.calloc_func = calloc_func;
6430
s_mem.realloc_func = realloc_func;
6431
s_mem.free_func = free_func;
6432
return true;
6433
}
6434
6435
int SDL_GetNumAllocations(void)
6436
{
6437
#ifdef SDL_TRACK_ALLOCATION_COUNT
6438
return SDL_GetAtomicInt(&s_mem.num_allocations);
6439
#else
6440
return -1;
6441
#endif
6442
}
6443
6444
void *SDL_malloc(size_t size)
6445
{
6446
void *mem;
6447
6448
if (!size) {
6449
size = 1;
6450
}
6451
6452
mem = s_mem.malloc_func(size);
6453
if (mem) {
6454
INCREMENT_ALLOCATION_COUNT();
6455
} else {
6456
SDL_OutOfMemory();
6457
}
6458
6459
return mem;
6460
}
6461
6462
void *SDL_calloc(size_t nmemb, size_t size)
6463
{
6464
void *mem;
6465
6466
if (!nmemb || !size) {
6467
nmemb = 1;
6468
size = 1;
6469
}
6470
6471
mem = s_mem.calloc_func(nmemb, size);
6472
if (mem) {
6473
INCREMENT_ALLOCATION_COUNT();
6474
} else {
6475
SDL_OutOfMemory();
6476
}
6477
6478
return mem;
6479
}
6480
6481
void *SDL_realloc(void *ptr, size_t size)
6482
{
6483
void *mem;
6484
6485
if (!size) {
6486
size = 1;
6487
}
6488
6489
mem = s_mem.realloc_func(ptr, size);
6490
if (mem && !ptr) {
6491
INCREMENT_ALLOCATION_COUNT();
6492
} else if (!mem) {
6493
SDL_OutOfMemory();
6494
}
6495
6496
return mem;
6497
}
6498
6499
void SDL_free(void *ptr)
6500
{
6501
if (!ptr) {
6502
return;
6503
}
6504
6505
s_mem.free_func(ptr);
6506
DECREMENT_ALLOCATION_COUNT();
6507
}
6508
6509