Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
greyhatguy007
GitHub Repository: greyhatguy007/Machine-Learning-Specialization-Coursera
Path: blob/main/C2 - Advanced Learning Algorithms/week2/C2W2A1/__pycache__/autils.cpython-37.pyc
3540 views
B

\�b��	@sddlZddlmZddlZddlmZddl	m
Z
ddlmZm
Z
mZeddddd	d
dd�ZdZdZdZdZd	Zd
ZdZeeeeegZej�d
�dd�Zdd�Zdd�Zdd�Zdd�Zdd�Z dd�Z!dd�Z"dd�Z#d d!�Z$d"d#�Z%d$d%�Z&d&d'�Z'd(d)�Z(dS)*�N)�
Sequential)�Dense)�linear�relu�sigmoidz#0096ffz#FF9300z#C00000z#FF40FFz#7030A0z#0D5BDCz#4285F4)�dlblue�dlorange�	dldarkred�	dlmagenta�dlpurple�
dldarkblue�	dlmedbluez./deeplearning.mplstylecCst�d�}t�d�}||fS)Nz
data/X.npyz
data/y.npy)�np�load)�X�y�r�/home/jovyan/work/autils.py�	load_datas

rcCs@t�ddd�}tjdddd�\}}t|�|d�|tjj�	|��|dj
dd	d
d�|djdd	d
d�|d�d�|d�|tjj�
|��|dj
dd	d
d�|djdd	d
d�|d�d
�|d�|tjj�|��|djdd	d
d�|dj
dd	d
d�|d�d�|jddd�|jdd�t��dS)N�������d��)��)�figsizerg333333�?�black)�lw�c�Linear�SigmoidrZReLuzCommon Activation Functions�)�fontsizeg�������?)�pad)r�linspace�plt�subplots�widgvis�plot�tf�keras�activationsr�axvline�axhline�	set_titlerr�suptitle�tight_layout�show)r�fig�axrrr�plt_act_trios$r5cCsd|j_d|j_d|j_dS)NF)�canvas�toolbar_visible�header_visible�footer_visible)r3rrrr('sr(cCs�t�ddtjd�}t�|�d}d|dd�<tjdddd�\}}t|�|�d�|�d	�|�	d
�|�
||�|jdd�t��||fS)
Nrrrr�2)rr)r�Target�xrg�������?)r$)
rr%�pi�cosr&r'r(r/�
set_xlabel�
set_ylabelr)r1r2)rrr3r4rrr�plt_ex1,s


rAcCs�t�ddtjd�}t�|�d}d|dd�<tjdddd�\}}t|�|�d�|�d	�|�	d
�|�
||�|jdd�t��||fS)
Nrrrr�1)rr)rr;r<rg�������?)r$)
rr%r=r>r&r'r(r/r?r@r)r1r2)rrr3r4rrr�plt_ex2:s


rCcCs6t�ddtjd�}t�|�d}|�dd�}||fS)Nrrrr�����)rr%r=r>�reshape)rrrrr�gen_dataHsrFcCs�tjdddd�\}}t|�|d�d�|d�d�|d�d�|d�||�|d�d	�|d�d�|d�d�|d�||�|d�||�|jd
d�t��dS)Nrr)�r)rrr;r<r�
Predictiong�������?)r$)	r&r'r(r/r?r@r)r1r2)rr�yhatr3r4rrr�plt_dualNsrJcCshtjdddd�\}}t|�|dj||dd�|djddd	d
�|djddd	d
�|d�d�|dj||dd�|dj||tdd
d�|djddd	d
�|djddd	d
�|d�d�|djdd�|dj||dd�|dj||tddd�|djddd	d
�|djddd	d
�|d�d�|d��|j	ddd�|j
dd�|S)Nrr)rg@)rr�target)�labelg333333�?r)rrz
y - targetr	�z)rrLz$z = w \cdot x+b$zupper center)�locrzReLu(z)zmax(0,z)zRole of Non-Linear Activation�)r#g)\���(�?)r$)r&r'r(r)r-r.r/�dlc�legendr0r1)rrrM�ar3r4rrr�plt_act1]s*rSc
Csv|djddddttdddd	�d
�|djddd
dttdddd	�d
�|djddddttdddd	�d
�dS)Nrz
matches
 here)g�?g�?)g�������?g���	rr�)�	facecolor�width�	headwidth)�text�xy�xytextr#�
arrowpropsz
but not
 here)rg�)r�����zReLu
 'off')g������@r)g�������?g�������?)�annotate�dictrP)r4rrr�plt_add_notationusr`c	Csj|jtjj��tjj�d�d�|j||ddd�|�d�}|�d�}|�	�\}}|�	�\}}||||fS)Ng{�G�z�?)�loss�	optimizerrr)�epochs�verbose�l1�l2)
�compiler*r+�losses�MeanSquaredError�
optimizers�Adam�fit�	get_layer�get_weights)	�modelrrrerf�w1�b1�w2�b2rrr�compile_fit�s


rtcCstjdddd�\}}t|�|d�d�|d�d�|d�d�|d�||�|d�d	�|d�d�|d�d�|d�||�|d�||�|d
�d�|d
�d�|d
�d�|d
�||�|d
�||�|jdd
�t��dS)Nrr)rUr)rrr;r<rzPrediction, pre-trainingrzPrediction, post-trainingg�������?)r$)	r&r'r(r/r?r@r)r1r2)rrZyhat_preZ	yhat_postr3r4rrr�	plt_model�s$rucCsN|�|�}tj|dd�}||dd�dfk}t�||dd�dfk�d}t|�dkr`td�n�tdt|��}tjd|dd�\}}	|j	ddd	dd
gd�t
|�x�t|�D]�}
||
}||�d�j
}|	|
j|d
d�|�||�dd��}
tj�|
�}t�|�}|	|
j||df�d|��dd�|	|
��|jddd�q�Wt|�S)Nr)�axisrzno errors foundrU)rg333333�?)rg�p=
ף�?g���Q��?g�������?)r$�rect)�rx�gray)�cmapi��,�
)r#zLabel, yhatrO)�predictr�argmax�where�len�print�minr&r'r1r(�rangerE�T�imshowr*�nn�softmaxr/�set_axis_offr0)rorr�frIZdoo�idxs�cntr3r4�i�j�
X_reshaped�
predictionZprediction_prrr�display_errors�s*


$r�cCsBtjdddd�\}}t|�|�d�j}|j|dd�t��dS)z8 display a single digit. The input is one digit (400,). r)g�?g�?)r)rxrxry)rzN)r&r'r(rEr�r�r2)rr3r4r�rrr�
display_digit�s
r�cCsptjdddd�\}}t|�|j|jddd�|�ddg�|�d�|�d	�|��|�	d
�t�
�dS)Nr)rGr)rra)rLrrZEpochzloss (cost)T)r&r'r(r)�history�set_ylimr?r@rQ�gridr2)r�r3r4rrr�plot_loss_tf�s


r�))�numpyr�matplotlib.pyplot�pyplotr&�
tensorflowr*�tensorflow.keras.modelsr�tensorflow.keras.layersr�tensorflow.keras.activationsrrrr_rPrrr	r
rrr
Zdlcolors�style�userr5r(rArCrFrJrSr`rtrur�r�r�rrrr�<module>s: