Path: blob/main/C3 - Unsupervised Learning, Recommenders, Reinforcement Learning/week1/C3W1A/C3W1A2/public_tests.py
3566 views
import numpy as np1import random23def select_threshold_test(target):4p_val = np.array([i / 100 for i in range(30)])5y_val = np.array([1] * 5 + [0] * 25)67best_epsilon, best_F1 = target(y_val, p_val)8assert np.isclose(best_epsilon, 0.04, atol=0.3 / 1000), f"Wrong best_epsilon. Expected: {0.04} got: {best_epsilon}"9assert best_F1 == 1, f"Wrong best_F1. Expected: 1 got: {best_F1}"1011y_val = np.array([1] * 5 + [0] * 25)12y_val[2] = 0 # Introduce noise13best_epsilon, best_F1 = target(y_val, p_val)14assert np.isclose(best_epsilon, 0.04, atol=0.3 / 1000), f"Wrong best_epsilon. Expected: {0.04} got: {best_epsilon}"15assert np.isclose(best_F1, 0.8888888), f"Wrong best_F1. Expected: 0.8888888 got: {best_F1}"1617p_val = np.array([i / 1000 for i in range(50)])18y_val = np.array([1] * 8 + [0] * 42)19y_val[5] = 020index = [*range(50)]21random.shuffle(index)22p_val = p_val[index]23y_val = y_val[index]2425best_epsilon, best_F1 = target(y_val, p_val)26assert np.isclose(best_epsilon, 0.007, atol=0.05 / 1000), f"Wrong best_epsilon. Expected: {0.0070070} got: {best_epsilon}"27assert np.isclose(best_F1, 0.933333333), f"Wrong best_F1. Expected: 0.933333333 got: {best_F1}"28print("\033[92mAll tests passed!")2930def estimate_gaussian_test(target):31np.random.seed(273)3233X = np.array([[1, 1, 1],34[2, 2, 2],35[3, 3, 3]]).T3637mu, var = target(X)3839assert type(mu) == np.ndarray, f"Wrong type for mu. Expected: {np.ndarray} got: {type(mu)}"40assert type(var) == np.ndarray, f"Wrong type for mu. Expected: {np.ndarray} got: {type(var)}"4142assert mu.shape == (X.shape[1],), f"Wrong shape for mu. Expected: {(X.shape[1],)} got: {mu.shape}"43assert type(var) == np.ndarray, f"Wrong shape for mu. Expected: {(X.shape[1],)} got: {var.shape}"4445assert np.allclose(mu, [1., 2., 3.]), f"Wrong value for mu. Expected: {[1, 2, 3]} got: {mu}"46assert np.allclose(var, [0., 0., 0.]), f"Wrong value for mu. Expected: {[0, 0, 0]} got: {var}"4748X = np.array([[1, 2, 3],49[2, 4, 6],50[3, 6, 9]]).T5152mu, var = target(X)5354assert type(mu) == np.ndarray, f"Wrong type for mu. Expected: {np.ndarray} got: {type(mu)}"55assert type(var) == np.ndarray, f"Wrong type for mu. Expected: {np.ndarray} got: {type(var)}"5657assert mu.shape == (X.shape[1],), f"Wrong shape for mu. Expected: {(X.shape[1],)} got: {mu.shape}"58assert type(var) == np.ndarray, f"Wrong shape for mu. Expected: {(X.shape[1],)} got: {var.shape}"5960assert np.allclose(mu, [2., 4., 6.]), f"Wrong value for mu. Expected: {[2., 4., 6.]} got: {mu}"61assert np.allclose(var, [2. / 3, 8. / 3., 18. / 3.]), f"Wrong value for mu. Expected: {[2. / 3, 8. / 3., 18. / 3.]} got: {var}"626364m = 50065X = np.array([np.random.normal(0, 1, m),66np.random.normal(1, 2, m),67np.random.normal(3, 1.5, m)]).T6869mu, var = target(X)7071assert type(mu) == np.ndarray, f"Wrong type for mu. Expected: {np.ndarray} got: {type(mu)}"72assert type(var) == np.ndarray, f"Wrong type for mu. Expected: {np.ndarray} got: {type(var)}"7374assert mu.shape == (X.shape[1],), f"Wrong shape for mu. Expected: {(X.shape[1],)} got: {mu.shape}"75assert type(var) == np.ndarray, f"Wrong shape for mu. Expected: {(X.shape[1],)} got: {var.shape}"7677assert np.allclose(mu, [0., 1., 3.], atol=0.2), f"Wrong value for mu. Expected: {[0, 1, 3]} got: {mu}"78assert np.allclose(var, np.square([1., 2., 1.5]), atol=0.2), f"Wrong value for mu. Expected: {np.square([1., 2., 1.5])} got: {var}"7980print("\033[92mAll tests passed!")8182