Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
guipsamora
GitHub Repository: guipsamora/pandas_exercises
Path: blob/master/05_Merge/Housing Market/Solutions.ipynb
548 views
Kernel: Python 2

Housing Market

Introduction:

This time we will create our own dataset with fictional numbers to describe a house market. As we are going to create random data don't try to reason of the numbers.

Step 1. Import the necessary libraries

import pandas as pd import numpy as np

Step 2. Create 3 differents Series, each of length 100, as follows:

  1. The first a random number from 1 to 4

  2. The second a random number from 1 to 3

  3. The third a random number from 10,000 to 30,000

0 2 1 2 2 4 3 2 4 1 5 1 6 2 7 3 8 3 9 2 10 1 11 2 12 4 13 1 14 2 15 3 16 4 17 4 18 4 19 3 20 2 21 1 22 4 23 1 24 3 25 2 26 3 27 1 28 3 29 4 .. 70 4 71 2 72 2 73 4 74 2 75 1 76 2 77 4 78 3 79 2 80 2 81 2 82 4 83 2 84 2 85 2 86 1 87 3 88 1 89 1 90 1 91 3 92 1 93 2 94 3 95 4 96 4 97 2 98 1 99 3 dtype: int64 0 2 1 3 2 2 3 3 4 3 5 1 6 2 7 1 8 2 9 2 10 2 11 3 12 3 13 1 14 3 15 3 16 3 17 1 18 3 19 3 20 3 21 3 22 1 23 2 24 3 25 2 26 2 27 1 28 3 29 3 .. 70 3 71 2 72 2 73 2 74 3 75 2 76 3 77 1 78 1 79 1 80 2 81 1 82 1 83 3 84 1 85 3 86 1 87 2 88 3 89 2 90 2 91 3 92 2 93 2 94 2 95 2 96 2 97 3 98 1 99 1 dtype: int64 0 16957 1 24571 2 28303 3 14153 4 23445 5 21444 6 16179 7 22696 8 18595 9 27145 10 14406 11 15011 12 17444 13 26236 14 23808 15 21417 16 15079 17 13100 18 21470 19 17082 20 21935 21 26770 22 10059 23 11095 24 25916 25 17137 26 22023 27 21612 28 11446 29 29281 ... 70 23963 71 26782 72 11199 73 23600 74 26935 75 27365 76 23084 77 19052 78 19922 79 17088 80 25468 81 10924 82 10243 83 19834 84 21288 85 22410 86 22348 87 18812 88 29522 89 20838 90 28695 91 23000 92 21684 93 26316 94 10866 95 12337 96 13480 97 25158 98 25585 99 26142 dtype: int64

Step 3. Let's create a DataFrame by joinning the Series by column

Step 4. Change the name of the columns to bedrs, bathrs, price_sqr_meter

Step 5. Create a one column DataFrame with the values of the 3 Series and assign it to 'bigcolumn'

<class 'pandas.core.frame.DataFrame'>

Step 6. Oops, it seems it is going only until index 99. Is it true?

300

Step 7. Reindex the DataFrame so it goes from 0 to 299