Path: blob/master/Week 3/Programming Assignment - 2/machine-learning-ex2/ex2/submit.m
863 views
function submit()1addpath('./lib');23conf.assignmentSlug = 'logistic-regression';4conf.itemName = 'Logistic Regression';5conf.partArrays = { ...6{ ...7'1', ...8{ 'sigmoid.m' }, ...9'Sigmoid Function', ...10}, ...11{ ...12'2', ...13{ 'costFunction.m' }, ...14'Logistic Regression Cost', ...15}, ...16{ ...17'3', ...18{ 'costFunction.m' }, ...19'Logistic Regression Gradient', ...20}, ...21{ ...22'4', ...23{ 'predict.m' }, ...24'Predict', ...25}, ...26{ ...27'5', ...28{ 'costFunctionReg.m' }, ...29'Regularized Logistic Regression Cost', ...30}, ...31{ ...32'6', ...33{ 'costFunctionReg.m' }, ...34'Regularized Logistic Regression Gradient', ...35}, ...36};37conf.output = @output;3839submitWithConfiguration(conf);40end4142function out = output(partId, auxstring)43% Random Test Cases44X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))'];45y = sin(X(:,1) + X(:,2)) > 0;46if partId == '1'47out = sprintf('%0.5f ', sigmoid(X));48elseif partId == '2'49out = sprintf('%0.5f ', costFunction([0.25 0.5 -0.5]', X, y));50elseif partId == '3'51[cost, grad] = costFunction([0.25 0.5 -0.5]', X, y);52out = sprintf('%0.5f ', grad);53elseif partId == '4'54out = sprintf('%0.5f ', predict([0.25 0.5 -0.5]', X));55elseif partId == '5'56out = sprintf('%0.5f ', costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1));57elseif partId == '6'58[cost, grad] = costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1);59out = sprintf('%0.5f ', grad);60end61end626364