Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
hackassin
GitHub Repository: hackassin/Coursera-Machine-Learning
Path: blob/master/Week 3/Programming Assignment - 2/machine-learning-ex2/ex2/submit.m
863 views
1
function submit()
2
addpath('./lib');
3
4
conf.assignmentSlug = 'logistic-regression';
5
conf.itemName = 'Logistic Regression';
6
conf.partArrays = { ...
7
{ ...
8
'1', ...
9
{ 'sigmoid.m' }, ...
10
'Sigmoid Function', ...
11
}, ...
12
{ ...
13
'2', ...
14
{ 'costFunction.m' }, ...
15
'Logistic Regression Cost', ...
16
}, ...
17
{ ...
18
'3', ...
19
{ 'costFunction.m' }, ...
20
'Logistic Regression Gradient', ...
21
}, ...
22
{ ...
23
'4', ...
24
{ 'predict.m' }, ...
25
'Predict', ...
26
}, ...
27
{ ...
28
'5', ...
29
{ 'costFunctionReg.m' }, ...
30
'Regularized Logistic Regression Cost', ...
31
}, ...
32
{ ...
33
'6', ...
34
{ 'costFunctionReg.m' }, ...
35
'Regularized Logistic Regression Gradient', ...
36
}, ...
37
};
38
conf.output = @output;
39
40
submitWithConfiguration(conf);
41
end
42
43
function out = output(partId, auxstring)
44
% Random Test Cases
45
X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))'];
46
y = sin(X(:,1) + X(:,2)) > 0;
47
if partId == '1'
48
out = sprintf('%0.5f ', sigmoid(X));
49
elseif partId == '2'
50
out = sprintf('%0.5f ', costFunction([0.25 0.5 -0.5]', X, y));
51
elseif partId == '3'
52
[cost, grad] = costFunction([0.25 0.5 -0.5]', X, y);
53
out = sprintf('%0.5f ', grad);
54
elseif partId == '4'
55
out = sprintf('%0.5f ', predict([0.25 0.5 -0.5]', X));
56
elseif partId == '5'
57
out = sprintf('%0.5f ', costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1));
58
elseif partId == '6'
59
[cost, grad] = costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1);
60
out = sprintf('%0.5f ', grad);
61
end
62
end
63
64