Path: blob/master/Week 5/Programming Assignment - 4/machine-learning-ex4/ex4/submit.m
864 views
function submit()1addpath('./lib');23conf.assignmentSlug = 'neural-network-learning';4conf.itemName = 'Neural Networks Learning';5conf.partArrays = { ...6{ ...7'1', ...8{ 'nnCostFunction.m' }, ...9'Feedforward and Cost Function', ...10}, ...11{ ...12'2', ...13{ 'nnCostFunction.m' }, ...14'Regularized Cost Function', ...15}, ...16{ ...17'3', ...18{ 'sigmoidGradient.m' }, ...19'Sigmoid Gradient', ...20}, ...21{ ...22'4', ...23{ 'nnCostFunction.m' }, ...24'Neural Network Gradient (Backpropagation)', ...25}, ...26{ ...27'5', ...28{ 'nnCostFunction.m' }, ...29'Regularized Gradient', ...30}, ...31};32conf.output = @output;3334submitWithConfiguration(conf);35end3637function out = output(partId, auxstring)38% Random Test Cases39X = reshape(3 * sin(1:1:30), 3, 10);40Xm = reshape(sin(1:32), 16, 2) / 5;41ym = 1 + mod(1:16,4)';42t1 = sin(reshape(1:2:24, 4, 3));43t2 = cos(reshape(1:2:40, 4, 5));44t = [t1(:) ; t2(:)];45if partId == '1'46[J] = nnCostFunction(t, 2, 4, 4, Xm, ym, 0);47out = sprintf('%0.5f ', J);48elseif partId == '2'49[J] = nnCostFunction(t, 2, 4, 4, Xm, ym, 1.5);50out = sprintf('%0.5f ', J);51elseif partId == '3'52out = sprintf('%0.5f ', sigmoidGradient(X));53elseif partId == '4'54[J, grad] = nnCostFunction(t, 2, 4, 4, Xm, ym, 0);55out = sprintf('%0.5f ', J);56out = [out sprintf('%0.5f ', grad)];57elseif partId == '5'58[J, grad] = nnCostFunction(t, 2, 4, 4, Xm, ym, 1.5);59out = sprintf('%0.5f ', J);60out = [out sprintf('%0.5f ', grad)];61end62end636465