Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
hackassin
GitHub Repository: hackassin/Coursera-Machine-Learning
Path: blob/master/Week 6/Programming Assignment - 5/machine-learning-ex5/ex5/submit.m
864 views
1
function submit()
2
addpath('./lib');
3
4
conf.assignmentSlug = 'regularized-linear-regression-and-bias-variance';
5
conf.itemName = 'Regularized Linear Regression and Bias/Variance';
6
conf.partArrays = { ...
7
{ ...
8
'1', ...
9
{ 'linearRegCostFunction.m' }, ...
10
'Regularized Linear Regression Cost Function', ...
11
}, ...
12
{ ...
13
'2', ...
14
{ 'linearRegCostFunction.m' }, ...
15
'Regularized Linear Regression Gradient', ...
16
}, ...
17
{ ...
18
'3', ...
19
{ 'learningCurve.m' }, ...
20
'Learning Curve', ...
21
}, ...
22
{ ...
23
'4', ...
24
{ 'polyFeatures.m' }, ...
25
'Polynomial Feature Mapping', ...
26
}, ...
27
{ ...
28
'5', ...
29
{ 'validationCurve.m' }, ...
30
'Validation Curve', ...
31
}, ...
32
};
33
conf.output = @output;
34
35
submitWithConfiguration(conf);
36
end
37
38
function out = output(partId, auxstring)
39
% Random Test Cases
40
X = [ones(10,1) sin(1:1.5:15)' cos(1:1.5:15)'];
41
y = sin(1:3:30)';
42
Xval = [ones(10,1) sin(0:1.5:14)' cos(0:1.5:14)'];
43
yval = sin(1:10)';
44
if partId == '1'
45
[J] = linearRegCostFunction(X, y, [0.1 0.2 0.3]', 0.5);
46
out = sprintf('%0.5f ', J);
47
elseif partId == '2'
48
[J, grad] = linearRegCostFunction(X, y, [0.1 0.2 0.3]', 0.5);
49
out = sprintf('%0.5f ', grad);
50
elseif partId == '3'
51
[error_train, error_val] = ...
52
learningCurve(X, y, Xval, yval, 1);
53
out = sprintf('%0.5f ', [error_train(:); error_val(:)]);
54
elseif partId == '4'
55
[X_poly] = polyFeatures(X(2,:)', 8);
56
out = sprintf('%0.5f ', X_poly);
57
elseif partId == '5'
58
[lambda_vec, error_train, error_val] = ...
59
validationCurve(X, y, Xval, yval);
60
out = sprintf('%0.5f ', ...
61
[lambda_vec(:); error_train(:); error_val(:)]);
62
end
63
end
64
65