from keras.models import Sequential
from keras.layers import Convolution2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
import matplotlib.pyplot as plt
class Net:
@staticmethod
def build(width, height, depth, weightsPath=None):
'''
modified lenet structure
input: input_shape (width, height, channels)
returns: trained/loaded model
'''
model = Sequential()
model.add(Convolution2D(32, (3, 3), input_shape = (width, height, depth)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size = (2, 2)))
model.add(Convolution2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size = (2, 2)))
model.add(Convolution2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size = (2, 2)))
model.add(Flatten())
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(36))
model.add(Activation('softmax'))
if weightsPath is not None:
print('weights loaded')
model.load_weights(weightsPath)
return model