Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
hackassin
GitHub Repository: hackassin/learnopencv
Path: blob/master/Deep-Learning-with-OpenCV-DNN-Module/README.md
3119 views

Deep Learning with OpenCV's DNN Module

Directory Structure

All the code files and folders follow the following structure.

├── cpp    ├── classify       ├── classify.cpp       └── CMakeLists.txt    └── detection    ├── detect_img       ├── CMakeLists.txt       └── detect_img.cpp    └── detect_vid    ├── CMakeLists.txt    └── detect_vid.cpp ├── input    ├── classification_classes_ILSVRC2012.txt    ├── DenseNet_121.caffemodel    ├── DenseNet_121.prototxt    ├── frozen_inference_graph.pb    ├── image_1.jpg    ├── image_2.jpg    ├── object_detection_classes_coco.txt    ├── ssd_mobilenet_v2_coco_2018_03_29.pbtxt.txt    └── video_1.mp4 ├── outputs    ├── image_result.jpg    ├── result_image.jpg    └── video_result.mp4 ├── python    ├── classification       ├── classify.py       └── README.md    ├── detection       ├── detect_img.py       └── detect_vid.py    └── requirements.txt └── README.md

Instructions

Python

To run the code in Python, please go into the python folder and execute the Python scripts in each of the respective sub-folders.

C++

To run the code in C++, please go into the cpp folder, then go into each of the respective sub-folders and follow the steps below:

mkdir build cd build cmake .. cmake --build . --config Release cd .. ./build/classify
mkdir build cd build cmake .. cmake --build . --config Release cd .. ./build/detect_img
mkdir build cd build cmake .. cmake --build . --config Release cd .. ./build/detect_vid

Outputs

Image Classification

Object Detection

AI Courses by OpenCV

Want to become an expert in AI? AI Courses by OpenCV is a great place to start.

img