Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
hackassin
GitHub Repository: hackassin/learnopencv
Path: blob/master/Deep-Learning-with-OpenCV-DNN-Module/input/ssd_mobilenet_v2_coco_2018_03_29.pbtxt.txt
3150 views
1
node {
2
name: "image_tensor"
3
op: "Placeholder"
4
attr {
5
key: "dtype"
6
value {
7
type: DT_UINT8
8
}
9
}
10
attr {
11
key: "shape"
12
value {
13
shape {
14
dim {
15
size: -1
16
}
17
dim {
18
size: -1
19
}
20
dim {
21
size: -1
22
}
23
dim {
24
size: 3
25
}
26
}
27
}
28
}
29
}
30
node {
31
name: "Preprocessor/mul"
32
op: "Mul"
33
input: "image_tensor"
34
input: "Preprocessor/mul/x"
35
}
36
node {
37
name: "Preprocessor/sub"
38
op: "Sub"
39
input: "Preprocessor/mul"
40
input: "Preprocessor/sub/y"
41
}
42
node {
43
name: "FeatureExtractor/MobilenetV2/Conv/Conv2D"
44
op: "Conv2D"
45
input: "Preprocessor/sub"
46
input: "FeatureExtractor/MobilenetV2/Conv/weights"
47
attr {
48
key: "dilations"
49
value {
50
list {
51
i: 1
52
i: 1
53
i: 1
54
i: 1
55
}
56
}
57
}
58
attr {
59
key: "padding"
60
value {
61
s: "SAME"
62
}
63
}
64
attr {
65
key: "strides"
66
value {
67
list {
68
i: 1
69
i: 2
70
i: 2
71
i: 1
72
}
73
}
74
}
75
}
76
node {
77
name: "FeatureExtractor/MobilenetV2/Conv/BatchNorm/batchnorm/add_1"
78
op: "FusedBatchNorm"
79
input: "FeatureExtractor/MobilenetV2/Conv/Conv2D"
80
input: "FeatureExtractor/MobilenetV2/Conv/BatchNorm/gamma"
81
input: "FeatureExtractor/MobilenetV2/Conv/BatchNorm/beta"
82
input: "FeatureExtractor/MobilenetV2/Conv/BatchNorm/moving_mean"
83
input: "FeatureExtractor/MobilenetV2/Conv/BatchNorm/moving_variance"
84
attr {
85
key: "epsilon"
86
value {
87
f: 0.0010000000475
88
}
89
}
90
}
91
node {
92
name: "FeatureExtractor/MobilenetV2/Conv/Relu6"
93
op: "Relu6"
94
input: "FeatureExtractor/MobilenetV2/Conv/BatchNorm/batchnorm/add_1"
95
}
96
node {
97
name: "FeatureExtractor/MobilenetV2/expanded_conv/depthwise/depthwise"
98
op: "DepthwiseConv2dNative"
99
input: "FeatureExtractor/MobilenetV2/Conv/Relu6"
100
input: "FeatureExtractor/MobilenetV2/expanded_conv/depthwise/depthwise_weights"
101
attr {
102
key: "dilations"
103
value {
104
list {
105
i: 1
106
i: 1
107
i: 1
108
i: 1
109
}
110
}
111
}
112
attr {
113
key: "padding"
114
value {
115
s: "SAME"
116
}
117
}
118
attr {
119
key: "strides"
120
value {
121
list {
122
i: 1
123
i: 1
124
i: 1
125
i: 1
126
}
127
}
128
}
129
}
130
node {
131
name: "FeatureExtractor/MobilenetV2/expanded_conv/depthwise/BatchNorm/batchnorm/add_1"
132
op: "FusedBatchNorm"
133
input: "FeatureExtractor/MobilenetV2/expanded_conv/depthwise/depthwise"
134
input: "FeatureExtractor/MobilenetV2/expanded_conv/depthwise/BatchNorm/gamma"
135
input: "FeatureExtractor/MobilenetV2/expanded_conv/depthwise/BatchNorm/beta"
136
input: "FeatureExtractor/MobilenetV2/expanded_conv/depthwise/BatchNorm/moving_mean"
137
input: "FeatureExtractor/MobilenetV2/expanded_conv/depthwise/BatchNorm/moving_variance"
138
attr {
139
key: "epsilon"
140
value {
141
f: 0.0010000000475
142
}
143
}
144
}
145
node {
146
name: "FeatureExtractor/MobilenetV2/expanded_conv/depthwise/Relu6"
147
op: "Relu6"
148
input: "FeatureExtractor/MobilenetV2/expanded_conv/depthwise/BatchNorm/batchnorm/add_1"
149
}
150
node {
151
name: "FeatureExtractor/MobilenetV2/expanded_conv/project/Conv2D"
152
op: "Conv2D"
153
input: "FeatureExtractor/MobilenetV2/expanded_conv/depthwise/Relu6"
154
input: "FeatureExtractor/MobilenetV2/expanded_conv/project/weights"
155
attr {
156
key: "dilations"
157
value {
158
list {
159
i: 1
160
i: 1
161
i: 1
162
i: 1
163
}
164
}
165
}
166
attr {
167
key: "padding"
168
value {
169
s: "SAME"
170
}
171
}
172
attr {
173
key: "strides"
174
value {
175
list {
176
i: 1
177
i: 1
178
i: 1
179
i: 1
180
}
181
}
182
}
183
}
184
node {
185
name: "FeatureExtractor/MobilenetV2/expanded_conv/project/BatchNorm/batchnorm/add_1"
186
op: "FusedBatchNorm"
187
input: "FeatureExtractor/MobilenetV2/expanded_conv/project/Conv2D"
188
input: "FeatureExtractor/MobilenetV2/expanded_conv/project/BatchNorm/gamma"
189
input: "FeatureExtractor/MobilenetV2/expanded_conv/project/BatchNorm/beta"
190
input: "FeatureExtractor/MobilenetV2/expanded_conv/project/BatchNorm/moving_mean"
191
input: "FeatureExtractor/MobilenetV2/expanded_conv/project/BatchNorm/moving_variance"
192
attr {
193
key: "epsilon"
194
value {
195
f: 0.0010000000475
196
}
197
}
198
}
199
node {
200
name: "FeatureExtractor/MobilenetV2/expanded_conv/output"
201
op: "Identity"
202
input: "FeatureExtractor/MobilenetV2/expanded_conv/project/BatchNorm/batchnorm/add_1"
203
}
204
node {
205
name: "FeatureExtractor/MobilenetV2/expanded_conv_1/expand/Conv2D"
206
op: "Conv2D"
207
input: "FeatureExtractor/MobilenetV2/expanded_conv/output"
208
input: "FeatureExtractor/MobilenetV2/expanded_conv_1/expand/weights"
209
attr {
210
key: "dilations"
211
value {
212
list {
213
i: 1
214
i: 1
215
i: 1
216
i: 1
217
}
218
}
219
}
220
attr {
221
key: "padding"
222
value {
223
s: "SAME"
224
}
225
}
226
attr {
227
key: "strides"
228
value {
229
list {
230
i: 1
231
i: 1
232
i: 1
233
i: 1
234
}
235
}
236
}
237
}
238
node {
239
name: "FeatureExtractor/MobilenetV2/expanded_conv_1/expand/BatchNorm/batchnorm/add_1"
240
op: "FusedBatchNorm"
241
input: "FeatureExtractor/MobilenetV2/expanded_conv_1/expand/Conv2D"
242
input: "FeatureExtractor/MobilenetV2/expanded_conv_1/expand/BatchNorm/gamma"
243
input: "FeatureExtractor/MobilenetV2/expanded_conv_1/expand/BatchNorm/beta"
244
input: "FeatureExtractor/MobilenetV2/expanded_conv_1/expand/BatchNorm/moving_mean"
245
input: "FeatureExtractor/MobilenetV2/expanded_conv_1/expand/BatchNorm/moving_variance"
246
attr {
247
key: "epsilon"
248
value {
249
f: 0.0010000000475
250
}
251
}
252
}
253
node {
254
name: "FeatureExtractor/MobilenetV2/expanded_conv_1/expand/Relu6"
255
op: "Relu6"
256
input: "FeatureExtractor/MobilenetV2/expanded_conv_1/expand/BatchNorm/batchnorm/add_1"
257
}
258
node {
259
name: "FeatureExtractor/MobilenetV2/expanded_conv_1/depthwise/depthwise"
260
op: "DepthwiseConv2dNative"
261
input: "FeatureExtractor/MobilenetV2/expanded_conv_1/expand/Relu6"
262
input: "FeatureExtractor/MobilenetV2/expanded_conv_1/depthwise/depthwise_weights"
263
attr {
264
key: "dilations"
265
value {
266
list {
267
i: 1
268
i: 1
269
i: 1
270
i: 1
271
}
272
}
273
}
274
attr {
275
key: "padding"
276
value {
277
s: "SAME"
278
}
279
}
280
attr {
281
key: "strides"
282
value {
283
list {
284
i: 1
285
i: 2
286
i: 2
287
i: 1
288
}
289
}
290
}
291
}
292
node {
293
name: "FeatureExtractor/MobilenetV2/expanded_conv_1/depthwise/BatchNorm/batchnorm/add_1"
294
op: "FusedBatchNorm"
295
input: "FeatureExtractor/MobilenetV2/expanded_conv_1/depthwise/depthwise"
296
input: "FeatureExtractor/MobilenetV2/expanded_conv_1/depthwise/BatchNorm/gamma"
297
input: "FeatureExtractor/MobilenetV2/expanded_conv_1/depthwise/BatchNorm/beta"
298
input: "FeatureExtractor/MobilenetV2/expanded_conv_1/depthwise/BatchNorm/moving_mean"
299
input: "FeatureExtractor/MobilenetV2/expanded_conv_1/depthwise/BatchNorm/moving_variance"
300
attr {
301
key: "epsilon"
302
value {
303
f: 0.0010000000475
304
}
305
}
306
}
307
node {
308
name: "FeatureExtractor/MobilenetV2/expanded_conv_1/depthwise/Relu6"
309
op: "Relu6"
310
input: "FeatureExtractor/MobilenetV2/expanded_conv_1/depthwise/BatchNorm/batchnorm/add_1"
311
}
312
node {
313
name: "FeatureExtractor/MobilenetV2/expanded_conv_1/project/Conv2D"
314
op: "Conv2D"
315
input: "FeatureExtractor/MobilenetV2/expanded_conv_1/depthwise/Relu6"
316
input: "FeatureExtractor/MobilenetV2/expanded_conv_1/project/weights"
317
attr {
318
key: "dilations"
319
value {
320
list {
321
i: 1
322
i: 1
323
i: 1
324
i: 1
325
}
326
}
327
}
328
attr {
329
key: "padding"
330
value {
331
s: "SAME"
332
}
333
}
334
attr {
335
key: "strides"
336
value {
337
list {
338
i: 1
339
i: 1
340
i: 1
341
i: 1
342
}
343
}
344
}
345
}
346
node {
347
name: "FeatureExtractor/MobilenetV2/expanded_conv_1/project/BatchNorm/batchnorm/add_1"
348
op: "FusedBatchNorm"
349
input: "FeatureExtractor/MobilenetV2/expanded_conv_1/project/Conv2D"
350
input: "FeatureExtractor/MobilenetV2/expanded_conv_1/project/BatchNorm/gamma"
351
input: "FeatureExtractor/MobilenetV2/expanded_conv_1/project/BatchNorm/beta"
352
input: "FeatureExtractor/MobilenetV2/expanded_conv_1/project/BatchNorm/moving_mean"
353
input: "FeatureExtractor/MobilenetV2/expanded_conv_1/project/BatchNorm/moving_variance"
354
attr {
355
key: "epsilon"
356
value {
357
f: 0.0010000000475
358
}
359
}
360
}
361
node {
362
name: "FeatureExtractor/MobilenetV2/expanded_conv_1/output"
363
op: "Identity"
364
input: "FeatureExtractor/MobilenetV2/expanded_conv_1/project/BatchNorm/batchnorm/add_1"
365
}
366
node {
367
name: "FeatureExtractor/MobilenetV2/expanded_conv_2/expand/Conv2D"
368
op: "Conv2D"
369
input: "FeatureExtractor/MobilenetV2/expanded_conv_1/output"
370
input: "FeatureExtractor/MobilenetV2/expanded_conv_2/expand/weights"
371
attr {
372
key: "dilations"
373
value {
374
list {
375
i: 1
376
i: 1
377
i: 1
378
i: 1
379
}
380
}
381
}
382
attr {
383
key: "padding"
384
value {
385
s: "SAME"
386
}
387
}
388
attr {
389
key: "strides"
390
value {
391
list {
392
i: 1
393
i: 1
394
i: 1
395
i: 1
396
}
397
}
398
}
399
}
400
node {
401
name: "FeatureExtractor/MobilenetV2/expanded_conv_2/expand/BatchNorm/batchnorm/add_1"
402
op: "FusedBatchNorm"
403
input: "FeatureExtractor/MobilenetV2/expanded_conv_2/expand/Conv2D"
404
input: "FeatureExtractor/MobilenetV2/expanded_conv_2/expand/BatchNorm/gamma"
405
input: "FeatureExtractor/MobilenetV2/expanded_conv_2/expand/BatchNorm/beta"
406
input: "FeatureExtractor/MobilenetV2/expanded_conv_2/expand/BatchNorm/moving_mean"
407
input: "FeatureExtractor/MobilenetV2/expanded_conv_2/expand/BatchNorm/moving_variance"
408
attr {
409
key: "epsilon"
410
value {
411
f: 0.0010000000475
412
}
413
}
414
}
415
node {
416
name: "FeatureExtractor/MobilenetV2/expanded_conv_2/expand/Relu6"
417
op: "Relu6"
418
input: "FeatureExtractor/MobilenetV2/expanded_conv_2/expand/BatchNorm/batchnorm/add_1"
419
}
420
node {
421
name: "FeatureExtractor/MobilenetV2/expanded_conv_2/depthwise/depthwise"
422
op: "DepthwiseConv2dNative"
423
input: "FeatureExtractor/MobilenetV2/expanded_conv_2/expand/Relu6"
424
input: "FeatureExtractor/MobilenetV2/expanded_conv_2/depthwise/depthwise_weights"
425
attr {
426
key: "dilations"
427
value {
428
list {
429
i: 1
430
i: 1
431
i: 1
432
i: 1
433
}
434
}
435
}
436
attr {
437
key: "padding"
438
value {
439
s: "SAME"
440
}
441
}
442
attr {
443
key: "strides"
444
value {
445
list {
446
i: 1
447
i: 1
448
i: 1
449
i: 1
450
}
451
}
452
}
453
}
454
node {
455
name: "FeatureExtractor/MobilenetV2/expanded_conv_2/depthwise/BatchNorm/batchnorm/add_1"
456
op: "FusedBatchNorm"
457
input: "FeatureExtractor/MobilenetV2/expanded_conv_2/depthwise/depthwise"
458
input: "FeatureExtractor/MobilenetV2/expanded_conv_2/depthwise/BatchNorm/gamma"
459
input: "FeatureExtractor/MobilenetV2/expanded_conv_2/depthwise/BatchNorm/beta"
460
input: "FeatureExtractor/MobilenetV2/expanded_conv_2/depthwise/BatchNorm/moving_mean"
461
input: "FeatureExtractor/MobilenetV2/expanded_conv_2/depthwise/BatchNorm/moving_variance"
462
attr {
463
key: "epsilon"
464
value {
465
f: 0.0010000000475
466
}
467
}
468
}
469
node {
470
name: "FeatureExtractor/MobilenetV2/expanded_conv_2/depthwise/Relu6"
471
op: "Relu6"
472
input: "FeatureExtractor/MobilenetV2/expanded_conv_2/depthwise/BatchNorm/batchnorm/add_1"
473
}
474
node {
475
name: "FeatureExtractor/MobilenetV2/expanded_conv_2/project/Conv2D"
476
op: "Conv2D"
477
input: "FeatureExtractor/MobilenetV2/expanded_conv_2/depthwise/Relu6"
478
input: "FeatureExtractor/MobilenetV2/expanded_conv_2/project/weights"
479
attr {
480
key: "dilations"
481
value {
482
list {
483
i: 1
484
i: 1
485
i: 1
486
i: 1
487
}
488
}
489
}
490
attr {
491
key: "padding"
492
value {
493
s: "SAME"
494
}
495
}
496
attr {
497
key: "strides"
498
value {
499
list {
500
i: 1
501
i: 1
502
i: 1
503
i: 1
504
}
505
}
506
}
507
}
508
node {
509
name: "FeatureExtractor/MobilenetV2/expanded_conv_2/project/BatchNorm/batchnorm/add_1"
510
op: "FusedBatchNorm"
511
input: "FeatureExtractor/MobilenetV2/expanded_conv_2/project/Conv2D"
512
input: "FeatureExtractor/MobilenetV2/expanded_conv_2/project/BatchNorm/gamma"
513
input: "FeatureExtractor/MobilenetV2/expanded_conv_2/project/BatchNorm/beta"
514
input: "FeatureExtractor/MobilenetV2/expanded_conv_2/project/BatchNorm/moving_mean"
515
input: "FeatureExtractor/MobilenetV2/expanded_conv_2/project/BatchNorm/moving_variance"
516
attr {
517
key: "epsilon"
518
value {
519
f: 0.0010000000475
520
}
521
}
522
}
523
node {
524
name: "FeatureExtractor/MobilenetV2/expanded_conv_2/add"
525
op: "Add"
526
input: "FeatureExtractor/MobilenetV2/expanded_conv_2/project/BatchNorm/batchnorm/add_1"
527
input: "FeatureExtractor/MobilenetV2/expanded_conv_1/output"
528
}
529
node {
530
name: "FeatureExtractor/MobilenetV2/expanded_conv_3/input"
531
op: "Identity"
532
input: "FeatureExtractor/MobilenetV2/expanded_conv_2/add"
533
}
534
node {
535
name: "FeatureExtractor/MobilenetV2/expanded_conv_3/expand/Conv2D"
536
op: "Conv2D"
537
input: "FeatureExtractor/MobilenetV2/expanded_conv_3/input"
538
input: "FeatureExtractor/MobilenetV2/expanded_conv_3/expand/weights"
539
attr {
540
key: "dilations"
541
value {
542
list {
543
i: 1
544
i: 1
545
i: 1
546
i: 1
547
}
548
}
549
}
550
attr {
551
key: "padding"
552
value {
553
s: "SAME"
554
}
555
}
556
attr {
557
key: "strides"
558
value {
559
list {
560
i: 1
561
i: 1
562
i: 1
563
i: 1
564
}
565
}
566
}
567
}
568
node {
569
name: "FeatureExtractor/MobilenetV2/expanded_conv_3/expand/BatchNorm/batchnorm/add_1"
570
op: "FusedBatchNorm"
571
input: "FeatureExtractor/MobilenetV2/expanded_conv_3/expand/Conv2D"
572
input: "FeatureExtractor/MobilenetV2/expanded_conv_3/expand/BatchNorm/gamma"
573
input: "FeatureExtractor/MobilenetV2/expanded_conv_3/expand/BatchNorm/beta"
574
input: "FeatureExtractor/MobilenetV2/expanded_conv_3/expand/BatchNorm/moving_mean"
575
input: "FeatureExtractor/MobilenetV2/expanded_conv_3/expand/BatchNorm/moving_variance"
576
attr {
577
key: "epsilon"
578
value {
579
f: 0.0010000000475
580
}
581
}
582
}
583
node {
584
name: "FeatureExtractor/MobilenetV2/expanded_conv_3/expand/Relu6"
585
op: "Relu6"
586
input: "FeatureExtractor/MobilenetV2/expanded_conv_3/expand/BatchNorm/batchnorm/add_1"
587
}
588
node {
589
name: "FeatureExtractor/MobilenetV2/expanded_conv_3/depthwise/depthwise"
590
op: "DepthwiseConv2dNative"
591
input: "FeatureExtractor/MobilenetV2/expanded_conv_3/expand/Relu6"
592
input: "FeatureExtractor/MobilenetV2/expanded_conv_3/depthwise/depthwise_weights"
593
attr {
594
key: "dilations"
595
value {
596
list {
597
i: 1
598
i: 1
599
i: 1
600
i: 1
601
}
602
}
603
}
604
attr {
605
key: "padding"
606
value {
607
s: "SAME"
608
}
609
}
610
attr {
611
key: "strides"
612
value {
613
list {
614
i: 1
615
i: 2
616
i: 2
617
i: 1
618
}
619
}
620
}
621
}
622
node {
623
name: "FeatureExtractor/MobilenetV2/expanded_conv_3/depthwise/BatchNorm/batchnorm/add_1"
624
op: "FusedBatchNorm"
625
input: "FeatureExtractor/MobilenetV2/expanded_conv_3/depthwise/depthwise"
626
input: "FeatureExtractor/MobilenetV2/expanded_conv_3/depthwise/BatchNorm/gamma"
627
input: "FeatureExtractor/MobilenetV2/expanded_conv_3/depthwise/BatchNorm/beta"
628
input: "FeatureExtractor/MobilenetV2/expanded_conv_3/depthwise/BatchNorm/moving_mean"
629
input: "FeatureExtractor/MobilenetV2/expanded_conv_3/depthwise/BatchNorm/moving_variance"
630
attr {
631
key: "epsilon"
632
value {
633
f: 0.0010000000475
634
}
635
}
636
}
637
node {
638
name: "FeatureExtractor/MobilenetV2/expanded_conv_3/depthwise/Relu6"
639
op: "Relu6"
640
input: "FeatureExtractor/MobilenetV2/expanded_conv_3/depthwise/BatchNorm/batchnorm/add_1"
641
}
642
node {
643
name: "FeatureExtractor/MobilenetV2/expanded_conv_3/project/Conv2D"
644
op: "Conv2D"
645
input: "FeatureExtractor/MobilenetV2/expanded_conv_3/depthwise/Relu6"
646
input: "FeatureExtractor/MobilenetV2/expanded_conv_3/project/weights"
647
attr {
648
key: "dilations"
649
value {
650
list {
651
i: 1
652
i: 1
653
i: 1
654
i: 1
655
}
656
}
657
}
658
attr {
659
key: "padding"
660
value {
661
s: "SAME"
662
}
663
}
664
attr {
665
key: "strides"
666
value {
667
list {
668
i: 1
669
i: 1
670
i: 1
671
i: 1
672
}
673
}
674
}
675
}
676
node {
677
name: "FeatureExtractor/MobilenetV2/expanded_conv_3/project/BatchNorm/batchnorm/add_1"
678
op: "FusedBatchNorm"
679
input: "FeatureExtractor/MobilenetV2/expanded_conv_3/project/Conv2D"
680
input: "FeatureExtractor/MobilenetV2/expanded_conv_3/project/BatchNorm/gamma"
681
input: "FeatureExtractor/MobilenetV2/expanded_conv_3/project/BatchNorm/beta"
682
input: "FeatureExtractor/MobilenetV2/expanded_conv_3/project/BatchNorm/moving_mean"
683
input: "FeatureExtractor/MobilenetV2/expanded_conv_3/project/BatchNorm/moving_variance"
684
attr {
685
key: "epsilon"
686
value {
687
f: 0.0010000000475
688
}
689
}
690
}
691
node {
692
name: "FeatureExtractor/MobilenetV2/expanded_conv_3/output"
693
op: "Identity"
694
input: "FeatureExtractor/MobilenetV2/expanded_conv_3/project/BatchNorm/batchnorm/add_1"
695
}
696
node {
697
name: "FeatureExtractor/MobilenetV2/expanded_conv_4/expand/Conv2D"
698
op: "Conv2D"
699
input: "FeatureExtractor/MobilenetV2/expanded_conv_3/output"
700
input: "FeatureExtractor/MobilenetV2/expanded_conv_4/expand/weights"
701
attr {
702
key: "dilations"
703
value {
704
list {
705
i: 1
706
i: 1
707
i: 1
708
i: 1
709
}
710
}
711
}
712
attr {
713
key: "padding"
714
value {
715
s: "SAME"
716
}
717
}
718
attr {
719
key: "strides"
720
value {
721
list {
722
i: 1
723
i: 1
724
i: 1
725
i: 1
726
}
727
}
728
}
729
}
730
node {
731
name: "FeatureExtractor/MobilenetV2/expanded_conv_4/expand/BatchNorm/batchnorm/add_1"
732
op: "FusedBatchNorm"
733
input: "FeatureExtractor/MobilenetV2/expanded_conv_4/expand/Conv2D"
734
input: "FeatureExtractor/MobilenetV2/expanded_conv_4/expand/BatchNorm/gamma"
735
input: "FeatureExtractor/MobilenetV2/expanded_conv_4/expand/BatchNorm/beta"
736
input: "FeatureExtractor/MobilenetV2/expanded_conv_4/expand/BatchNorm/moving_mean"
737
input: "FeatureExtractor/MobilenetV2/expanded_conv_4/expand/BatchNorm/moving_variance"
738
attr {
739
key: "epsilon"
740
value {
741
f: 0.0010000000475
742
}
743
}
744
}
745
node {
746
name: "FeatureExtractor/MobilenetV2/expanded_conv_4/expand/Relu6"
747
op: "Relu6"
748
input: "FeatureExtractor/MobilenetV2/expanded_conv_4/expand/BatchNorm/batchnorm/add_1"
749
}
750
node {
751
name: "FeatureExtractor/MobilenetV2/expanded_conv_4/depthwise/depthwise"
752
op: "DepthwiseConv2dNative"
753
input: "FeatureExtractor/MobilenetV2/expanded_conv_4/expand/Relu6"
754
input: "FeatureExtractor/MobilenetV2/expanded_conv_4/depthwise/depthwise_weights"
755
attr {
756
key: "dilations"
757
value {
758
list {
759
i: 1
760
i: 1
761
i: 1
762
i: 1
763
}
764
}
765
}
766
attr {
767
key: "padding"
768
value {
769
s: "SAME"
770
}
771
}
772
attr {
773
key: "strides"
774
value {
775
list {
776
i: 1
777
i: 1
778
i: 1
779
i: 1
780
}
781
}
782
}
783
}
784
node {
785
name: "FeatureExtractor/MobilenetV2/expanded_conv_4/depthwise/BatchNorm/batchnorm/add_1"
786
op: "FusedBatchNorm"
787
input: "FeatureExtractor/MobilenetV2/expanded_conv_4/depthwise/depthwise"
788
input: "FeatureExtractor/MobilenetV2/expanded_conv_4/depthwise/BatchNorm/gamma"
789
input: "FeatureExtractor/MobilenetV2/expanded_conv_4/depthwise/BatchNorm/beta"
790
input: "FeatureExtractor/MobilenetV2/expanded_conv_4/depthwise/BatchNorm/moving_mean"
791
input: "FeatureExtractor/MobilenetV2/expanded_conv_4/depthwise/BatchNorm/moving_variance"
792
attr {
793
key: "epsilon"
794
value {
795
f: 0.0010000000475
796
}
797
}
798
}
799
node {
800
name: "FeatureExtractor/MobilenetV2/expanded_conv_4/depthwise/Relu6"
801
op: "Relu6"
802
input: "FeatureExtractor/MobilenetV2/expanded_conv_4/depthwise/BatchNorm/batchnorm/add_1"
803
}
804
node {
805
name: "FeatureExtractor/MobilenetV2/expanded_conv_4/project/Conv2D"
806
op: "Conv2D"
807
input: "FeatureExtractor/MobilenetV2/expanded_conv_4/depthwise/Relu6"
808
input: "FeatureExtractor/MobilenetV2/expanded_conv_4/project/weights"
809
attr {
810
key: "dilations"
811
value {
812
list {
813
i: 1
814
i: 1
815
i: 1
816
i: 1
817
}
818
}
819
}
820
attr {
821
key: "padding"
822
value {
823
s: "SAME"
824
}
825
}
826
attr {
827
key: "strides"
828
value {
829
list {
830
i: 1
831
i: 1
832
i: 1
833
i: 1
834
}
835
}
836
}
837
}
838
node {
839
name: "FeatureExtractor/MobilenetV2/expanded_conv_4/project/BatchNorm/batchnorm/add_1"
840
op: "FusedBatchNorm"
841
input: "FeatureExtractor/MobilenetV2/expanded_conv_4/project/Conv2D"
842
input: "FeatureExtractor/MobilenetV2/expanded_conv_4/project/BatchNorm/gamma"
843
input: "FeatureExtractor/MobilenetV2/expanded_conv_4/project/BatchNorm/beta"
844
input: "FeatureExtractor/MobilenetV2/expanded_conv_4/project/BatchNorm/moving_mean"
845
input: "FeatureExtractor/MobilenetV2/expanded_conv_4/project/BatchNorm/moving_variance"
846
attr {
847
key: "epsilon"
848
value {
849
f: 0.0010000000475
850
}
851
}
852
}
853
node {
854
name: "FeatureExtractor/MobilenetV2/expanded_conv_4/add"
855
op: "Add"
856
input: "FeatureExtractor/MobilenetV2/expanded_conv_4/project/BatchNorm/batchnorm/add_1"
857
input: "FeatureExtractor/MobilenetV2/expanded_conv_3/output"
858
}
859
node {
860
name: "FeatureExtractor/MobilenetV2/expanded_conv_5/input"
861
op: "Identity"
862
input: "FeatureExtractor/MobilenetV2/expanded_conv_4/add"
863
}
864
node {
865
name: "FeatureExtractor/MobilenetV2/expanded_conv_5/expand/Conv2D"
866
op: "Conv2D"
867
input: "FeatureExtractor/MobilenetV2/expanded_conv_5/input"
868
input: "FeatureExtractor/MobilenetV2/expanded_conv_5/expand/weights"
869
attr {
870
key: "dilations"
871
value {
872
list {
873
i: 1
874
i: 1
875
i: 1
876
i: 1
877
}
878
}
879
}
880
attr {
881
key: "padding"
882
value {
883
s: "SAME"
884
}
885
}
886
attr {
887
key: "strides"
888
value {
889
list {
890
i: 1
891
i: 1
892
i: 1
893
i: 1
894
}
895
}
896
}
897
}
898
node {
899
name: "FeatureExtractor/MobilenetV2/expanded_conv_5/expand/BatchNorm/batchnorm/add_1"
900
op: "FusedBatchNorm"
901
input: "FeatureExtractor/MobilenetV2/expanded_conv_5/expand/Conv2D"
902
input: "FeatureExtractor/MobilenetV2/expanded_conv_5/expand/BatchNorm/gamma"
903
input: "FeatureExtractor/MobilenetV2/expanded_conv_5/expand/BatchNorm/beta"
904
input: "FeatureExtractor/MobilenetV2/expanded_conv_5/expand/BatchNorm/moving_mean"
905
input: "FeatureExtractor/MobilenetV2/expanded_conv_5/expand/BatchNorm/moving_variance"
906
attr {
907
key: "epsilon"
908
value {
909
f: 0.0010000000475
910
}
911
}
912
}
913
node {
914
name: "FeatureExtractor/MobilenetV2/expanded_conv_5/expand/Relu6"
915
op: "Relu6"
916
input: "FeatureExtractor/MobilenetV2/expanded_conv_5/expand/BatchNorm/batchnorm/add_1"
917
}
918
node {
919
name: "FeatureExtractor/MobilenetV2/expanded_conv_5/depthwise/depthwise"
920
op: "DepthwiseConv2dNative"
921
input: "FeatureExtractor/MobilenetV2/expanded_conv_5/expand/Relu6"
922
input: "FeatureExtractor/MobilenetV2/expanded_conv_5/depthwise/depthwise_weights"
923
attr {
924
key: "dilations"
925
value {
926
list {
927
i: 1
928
i: 1
929
i: 1
930
i: 1
931
}
932
}
933
}
934
attr {
935
key: "padding"
936
value {
937
s: "SAME"
938
}
939
}
940
attr {
941
key: "strides"
942
value {
943
list {
944
i: 1
945
i: 1
946
i: 1
947
i: 1
948
}
949
}
950
}
951
}
952
node {
953
name: "FeatureExtractor/MobilenetV2/expanded_conv_5/depthwise/BatchNorm/batchnorm/add_1"
954
op: "FusedBatchNorm"
955
input: "FeatureExtractor/MobilenetV2/expanded_conv_5/depthwise/depthwise"
956
input: "FeatureExtractor/MobilenetV2/expanded_conv_5/depthwise/BatchNorm/gamma"
957
input: "FeatureExtractor/MobilenetV2/expanded_conv_5/depthwise/BatchNorm/beta"
958
input: "FeatureExtractor/MobilenetV2/expanded_conv_5/depthwise/BatchNorm/moving_mean"
959
input: "FeatureExtractor/MobilenetV2/expanded_conv_5/depthwise/BatchNorm/moving_variance"
960
attr {
961
key: "epsilon"
962
value {
963
f: 0.0010000000475
964
}
965
}
966
}
967
node {
968
name: "FeatureExtractor/MobilenetV2/expanded_conv_5/depthwise/Relu6"
969
op: "Relu6"
970
input: "FeatureExtractor/MobilenetV2/expanded_conv_5/depthwise/BatchNorm/batchnorm/add_1"
971
}
972
node {
973
name: "FeatureExtractor/MobilenetV2/expanded_conv_5/project/Conv2D"
974
op: "Conv2D"
975
input: "FeatureExtractor/MobilenetV2/expanded_conv_5/depthwise/Relu6"
976
input: "FeatureExtractor/MobilenetV2/expanded_conv_5/project/weights"
977
attr {
978
key: "dilations"
979
value {
980
list {
981
i: 1
982
i: 1
983
i: 1
984
i: 1
985
}
986
}
987
}
988
attr {
989
key: "padding"
990
value {
991
s: "SAME"
992
}
993
}
994
attr {
995
key: "strides"
996
value {
997
list {
998
i: 1
999
i: 1
1000
i: 1
1001
i: 1
1002
}
1003
}
1004
}
1005
}
1006
node {
1007
name: "FeatureExtractor/MobilenetV2/expanded_conv_5/project/BatchNorm/batchnorm/add_1"
1008
op: "FusedBatchNorm"
1009
input: "FeatureExtractor/MobilenetV2/expanded_conv_5/project/Conv2D"
1010
input: "FeatureExtractor/MobilenetV2/expanded_conv_5/project/BatchNorm/gamma"
1011
input: "FeatureExtractor/MobilenetV2/expanded_conv_5/project/BatchNorm/beta"
1012
input: "FeatureExtractor/MobilenetV2/expanded_conv_5/project/BatchNorm/moving_mean"
1013
input: "FeatureExtractor/MobilenetV2/expanded_conv_5/project/BatchNorm/moving_variance"
1014
attr {
1015
key: "epsilon"
1016
value {
1017
f: 0.0010000000475
1018
}
1019
}
1020
}
1021
node {
1022
name: "FeatureExtractor/MobilenetV2/expanded_conv_5/add"
1023
op: "Add"
1024
input: "FeatureExtractor/MobilenetV2/expanded_conv_5/project/BatchNorm/batchnorm/add_1"
1025
input: "FeatureExtractor/MobilenetV2/expanded_conv_5/input"
1026
}
1027
node {
1028
name: "FeatureExtractor/MobilenetV2/expanded_conv_6/input"
1029
op: "Identity"
1030
input: "FeatureExtractor/MobilenetV2/expanded_conv_5/add"
1031
}
1032
node {
1033
name: "FeatureExtractor/MobilenetV2/expanded_conv_6/expand/Conv2D"
1034
op: "Conv2D"
1035
input: "FeatureExtractor/MobilenetV2/expanded_conv_6/input"
1036
input: "FeatureExtractor/MobilenetV2/expanded_conv_6/expand/weights"
1037
attr {
1038
key: "dilations"
1039
value {
1040
list {
1041
i: 1
1042
i: 1
1043
i: 1
1044
i: 1
1045
}
1046
}
1047
}
1048
attr {
1049
key: "padding"
1050
value {
1051
s: "SAME"
1052
}
1053
}
1054
attr {
1055
key: "strides"
1056
value {
1057
list {
1058
i: 1
1059
i: 1
1060
i: 1
1061
i: 1
1062
}
1063
}
1064
}
1065
}
1066
node {
1067
name: "FeatureExtractor/MobilenetV2/expanded_conv_6/expand/BatchNorm/batchnorm/add_1"
1068
op: "FusedBatchNorm"
1069
input: "FeatureExtractor/MobilenetV2/expanded_conv_6/expand/Conv2D"
1070
input: "FeatureExtractor/MobilenetV2/expanded_conv_6/expand/BatchNorm/gamma"
1071
input: "FeatureExtractor/MobilenetV2/expanded_conv_6/expand/BatchNorm/beta"
1072
input: "FeatureExtractor/MobilenetV2/expanded_conv_6/expand/BatchNorm/moving_mean"
1073
input: "FeatureExtractor/MobilenetV2/expanded_conv_6/expand/BatchNorm/moving_variance"
1074
attr {
1075
key: "epsilon"
1076
value {
1077
f: 0.0010000000475
1078
}
1079
}
1080
}
1081
node {
1082
name: "FeatureExtractor/MobilenetV2/expanded_conv_6/expand/Relu6"
1083
op: "Relu6"
1084
input: "FeatureExtractor/MobilenetV2/expanded_conv_6/expand/BatchNorm/batchnorm/add_1"
1085
}
1086
node {
1087
name: "FeatureExtractor/MobilenetV2/expanded_conv_6/depthwise/depthwise"
1088
op: "DepthwiseConv2dNative"
1089
input: "FeatureExtractor/MobilenetV2/expanded_conv_6/expand/Relu6"
1090
input: "FeatureExtractor/MobilenetV2/expanded_conv_6/depthwise/depthwise_weights"
1091
attr {
1092
key: "dilations"
1093
value {
1094
list {
1095
i: 1
1096
i: 1
1097
i: 1
1098
i: 1
1099
}
1100
}
1101
}
1102
attr {
1103
key: "padding"
1104
value {
1105
s: "SAME"
1106
}
1107
}
1108
attr {
1109
key: "strides"
1110
value {
1111
list {
1112
i: 1
1113
i: 2
1114
i: 2
1115
i: 1
1116
}
1117
}
1118
}
1119
}
1120
node {
1121
name: "FeatureExtractor/MobilenetV2/expanded_conv_6/depthwise/BatchNorm/batchnorm/add_1"
1122
op: "FusedBatchNorm"
1123
input: "FeatureExtractor/MobilenetV2/expanded_conv_6/depthwise/depthwise"
1124
input: "FeatureExtractor/MobilenetV2/expanded_conv_6/depthwise/BatchNorm/gamma"
1125
input: "FeatureExtractor/MobilenetV2/expanded_conv_6/depthwise/BatchNorm/beta"
1126
input: "FeatureExtractor/MobilenetV2/expanded_conv_6/depthwise/BatchNorm/moving_mean"
1127
input: "FeatureExtractor/MobilenetV2/expanded_conv_6/depthwise/BatchNorm/moving_variance"
1128
attr {
1129
key: "epsilon"
1130
value {
1131
f: 0.0010000000475
1132
}
1133
}
1134
}
1135
node {
1136
name: "FeatureExtractor/MobilenetV2/expanded_conv_6/depthwise/Relu6"
1137
op: "Relu6"
1138
input: "FeatureExtractor/MobilenetV2/expanded_conv_6/depthwise/BatchNorm/batchnorm/add_1"
1139
}
1140
node {
1141
name: "FeatureExtractor/MobilenetV2/expanded_conv_6/project/Conv2D"
1142
op: "Conv2D"
1143
input: "FeatureExtractor/MobilenetV2/expanded_conv_6/depthwise/Relu6"
1144
input: "FeatureExtractor/MobilenetV2/expanded_conv_6/project/weights"
1145
attr {
1146
key: "dilations"
1147
value {
1148
list {
1149
i: 1
1150
i: 1
1151
i: 1
1152
i: 1
1153
}
1154
}
1155
}
1156
attr {
1157
key: "padding"
1158
value {
1159
s: "SAME"
1160
}
1161
}
1162
attr {
1163
key: "strides"
1164
value {
1165
list {
1166
i: 1
1167
i: 1
1168
i: 1
1169
i: 1
1170
}
1171
}
1172
}
1173
}
1174
node {
1175
name: "FeatureExtractor/MobilenetV2/expanded_conv_6/project/BatchNorm/batchnorm/add_1"
1176
op: "FusedBatchNorm"
1177
input: "FeatureExtractor/MobilenetV2/expanded_conv_6/project/Conv2D"
1178
input: "FeatureExtractor/MobilenetV2/expanded_conv_6/project/BatchNorm/gamma"
1179
input: "FeatureExtractor/MobilenetV2/expanded_conv_6/project/BatchNorm/beta"
1180
input: "FeatureExtractor/MobilenetV2/expanded_conv_6/project/BatchNorm/moving_mean"
1181
input: "FeatureExtractor/MobilenetV2/expanded_conv_6/project/BatchNorm/moving_variance"
1182
attr {
1183
key: "epsilon"
1184
value {
1185
f: 0.0010000000475
1186
}
1187
}
1188
}
1189
node {
1190
name: "FeatureExtractor/MobilenetV2/expanded_conv_6/output"
1191
op: "Identity"
1192
input: "FeatureExtractor/MobilenetV2/expanded_conv_6/project/BatchNorm/batchnorm/add_1"
1193
}
1194
node {
1195
name: "FeatureExtractor/MobilenetV2/expanded_conv_7/expand/Conv2D"
1196
op: "Conv2D"
1197
input: "FeatureExtractor/MobilenetV2/expanded_conv_6/output"
1198
input: "FeatureExtractor/MobilenetV2/expanded_conv_7/expand/weights"
1199
attr {
1200
key: "dilations"
1201
value {
1202
list {
1203
i: 1
1204
i: 1
1205
i: 1
1206
i: 1
1207
}
1208
}
1209
}
1210
attr {
1211
key: "padding"
1212
value {
1213
s: "SAME"
1214
}
1215
}
1216
attr {
1217
key: "strides"
1218
value {
1219
list {
1220
i: 1
1221
i: 1
1222
i: 1
1223
i: 1
1224
}
1225
}
1226
}
1227
}
1228
node {
1229
name: "FeatureExtractor/MobilenetV2/expanded_conv_7/expand/BatchNorm/batchnorm/add_1"
1230
op: "FusedBatchNorm"
1231
input: "FeatureExtractor/MobilenetV2/expanded_conv_7/expand/Conv2D"
1232
input: "FeatureExtractor/MobilenetV2/expanded_conv_7/expand/BatchNorm/gamma"
1233
input: "FeatureExtractor/MobilenetV2/expanded_conv_7/expand/BatchNorm/beta"
1234
input: "FeatureExtractor/MobilenetV2/expanded_conv_7/expand/BatchNorm/moving_mean"
1235
input: "FeatureExtractor/MobilenetV2/expanded_conv_7/expand/BatchNorm/moving_variance"
1236
attr {
1237
key: "epsilon"
1238
value {
1239
f: 0.0010000000475
1240
}
1241
}
1242
}
1243
node {
1244
name: "FeatureExtractor/MobilenetV2/expanded_conv_7/expand/Relu6"
1245
op: "Relu6"
1246
input: "FeatureExtractor/MobilenetV2/expanded_conv_7/expand/BatchNorm/batchnorm/add_1"
1247
}
1248
node {
1249
name: "FeatureExtractor/MobilenetV2/expanded_conv_7/depthwise/depthwise"
1250
op: "DepthwiseConv2dNative"
1251
input: "FeatureExtractor/MobilenetV2/expanded_conv_7/expand/Relu6"
1252
input: "FeatureExtractor/MobilenetV2/expanded_conv_7/depthwise/depthwise_weights"
1253
attr {
1254
key: "dilations"
1255
value {
1256
list {
1257
i: 1
1258
i: 1
1259
i: 1
1260
i: 1
1261
}
1262
}
1263
}
1264
attr {
1265
key: "padding"
1266
value {
1267
s: "SAME"
1268
}
1269
}
1270
attr {
1271
key: "strides"
1272
value {
1273
list {
1274
i: 1
1275
i: 1
1276
i: 1
1277
i: 1
1278
}
1279
}
1280
}
1281
}
1282
node {
1283
name: "FeatureExtractor/MobilenetV2/expanded_conv_7/depthwise/BatchNorm/batchnorm/add_1"
1284
op: "FusedBatchNorm"
1285
input: "FeatureExtractor/MobilenetV2/expanded_conv_7/depthwise/depthwise"
1286
input: "FeatureExtractor/MobilenetV2/expanded_conv_7/depthwise/BatchNorm/gamma"
1287
input: "FeatureExtractor/MobilenetV2/expanded_conv_7/depthwise/BatchNorm/beta"
1288
input: "FeatureExtractor/MobilenetV2/expanded_conv_7/depthwise/BatchNorm/moving_mean"
1289
input: "FeatureExtractor/MobilenetV2/expanded_conv_7/depthwise/BatchNorm/moving_variance"
1290
attr {
1291
key: "epsilon"
1292
value {
1293
f: 0.0010000000475
1294
}
1295
}
1296
}
1297
node {
1298
name: "FeatureExtractor/MobilenetV2/expanded_conv_7/depthwise/Relu6"
1299
op: "Relu6"
1300
input: "FeatureExtractor/MobilenetV2/expanded_conv_7/depthwise/BatchNorm/batchnorm/add_1"
1301
}
1302
node {
1303
name: "FeatureExtractor/MobilenetV2/expanded_conv_7/project/Conv2D"
1304
op: "Conv2D"
1305
input: "FeatureExtractor/MobilenetV2/expanded_conv_7/depthwise/Relu6"
1306
input: "FeatureExtractor/MobilenetV2/expanded_conv_7/project/weights"
1307
attr {
1308
key: "dilations"
1309
value {
1310
list {
1311
i: 1
1312
i: 1
1313
i: 1
1314
i: 1
1315
}
1316
}
1317
}
1318
attr {
1319
key: "padding"
1320
value {
1321
s: "SAME"
1322
}
1323
}
1324
attr {
1325
key: "strides"
1326
value {
1327
list {
1328
i: 1
1329
i: 1
1330
i: 1
1331
i: 1
1332
}
1333
}
1334
}
1335
}
1336
node {
1337
name: "FeatureExtractor/MobilenetV2/expanded_conv_7/project/BatchNorm/batchnorm/add_1"
1338
op: "FusedBatchNorm"
1339
input: "FeatureExtractor/MobilenetV2/expanded_conv_7/project/Conv2D"
1340
input: "FeatureExtractor/MobilenetV2/expanded_conv_7/project/BatchNorm/gamma"
1341
input: "FeatureExtractor/MobilenetV2/expanded_conv_7/project/BatchNorm/beta"
1342
input: "FeatureExtractor/MobilenetV2/expanded_conv_7/project/BatchNorm/moving_mean"
1343
input: "FeatureExtractor/MobilenetV2/expanded_conv_7/project/BatchNorm/moving_variance"
1344
attr {
1345
key: "epsilon"
1346
value {
1347
f: 0.0010000000475
1348
}
1349
}
1350
}
1351
node {
1352
name: "FeatureExtractor/MobilenetV2/expanded_conv_7/add"
1353
op: "Add"
1354
input: "FeatureExtractor/MobilenetV2/expanded_conv_7/project/BatchNorm/batchnorm/add_1"
1355
input: "FeatureExtractor/MobilenetV2/expanded_conv_6/output"
1356
}
1357
node {
1358
name: "FeatureExtractor/MobilenetV2/expanded_conv_8/input"
1359
op: "Identity"
1360
input: "FeatureExtractor/MobilenetV2/expanded_conv_7/add"
1361
}
1362
node {
1363
name: "FeatureExtractor/MobilenetV2/expanded_conv_8/expand/Conv2D"
1364
op: "Conv2D"
1365
input: "FeatureExtractor/MobilenetV2/expanded_conv_8/input"
1366
input: "FeatureExtractor/MobilenetV2/expanded_conv_8/expand/weights"
1367
attr {
1368
key: "dilations"
1369
value {
1370
list {
1371
i: 1
1372
i: 1
1373
i: 1
1374
i: 1
1375
}
1376
}
1377
}
1378
attr {
1379
key: "padding"
1380
value {
1381
s: "SAME"
1382
}
1383
}
1384
attr {
1385
key: "strides"
1386
value {
1387
list {
1388
i: 1
1389
i: 1
1390
i: 1
1391
i: 1
1392
}
1393
}
1394
}
1395
}
1396
node {
1397
name: "FeatureExtractor/MobilenetV2/expanded_conv_8/expand/BatchNorm/batchnorm/add_1"
1398
op: "FusedBatchNorm"
1399
input: "FeatureExtractor/MobilenetV2/expanded_conv_8/expand/Conv2D"
1400
input: "FeatureExtractor/MobilenetV2/expanded_conv_8/expand/BatchNorm/gamma"
1401
input: "FeatureExtractor/MobilenetV2/expanded_conv_8/expand/BatchNorm/beta"
1402
input: "FeatureExtractor/MobilenetV2/expanded_conv_8/expand/BatchNorm/moving_mean"
1403
input: "FeatureExtractor/MobilenetV2/expanded_conv_8/expand/BatchNorm/moving_variance"
1404
attr {
1405
key: "epsilon"
1406
value {
1407
f: 0.0010000000475
1408
}
1409
}
1410
}
1411
node {
1412
name: "FeatureExtractor/MobilenetV2/expanded_conv_8/expand/Relu6"
1413
op: "Relu6"
1414
input: "FeatureExtractor/MobilenetV2/expanded_conv_8/expand/BatchNorm/batchnorm/add_1"
1415
}
1416
node {
1417
name: "FeatureExtractor/MobilenetV2/expanded_conv_8/depthwise/depthwise"
1418
op: "DepthwiseConv2dNative"
1419
input: "FeatureExtractor/MobilenetV2/expanded_conv_8/expand/Relu6"
1420
input: "FeatureExtractor/MobilenetV2/expanded_conv_8/depthwise/depthwise_weights"
1421
attr {
1422
key: "dilations"
1423
value {
1424
list {
1425
i: 1
1426
i: 1
1427
i: 1
1428
i: 1
1429
}
1430
}
1431
}
1432
attr {
1433
key: "padding"
1434
value {
1435
s: "SAME"
1436
}
1437
}
1438
attr {
1439
key: "strides"
1440
value {
1441
list {
1442
i: 1
1443
i: 1
1444
i: 1
1445
i: 1
1446
}
1447
}
1448
}
1449
}
1450
node {
1451
name: "FeatureExtractor/MobilenetV2/expanded_conv_8/depthwise/BatchNorm/batchnorm/add_1"
1452
op: "FusedBatchNorm"
1453
input: "FeatureExtractor/MobilenetV2/expanded_conv_8/depthwise/depthwise"
1454
input: "FeatureExtractor/MobilenetV2/expanded_conv_8/depthwise/BatchNorm/gamma"
1455
input: "FeatureExtractor/MobilenetV2/expanded_conv_8/depthwise/BatchNorm/beta"
1456
input: "FeatureExtractor/MobilenetV2/expanded_conv_8/depthwise/BatchNorm/moving_mean"
1457
input: "FeatureExtractor/MobilenetV2/expanded_conv_8/depthwise/BatchNorm/moving_variance"
1458
attr {
1459
key: "epsilon"
1460
value {
1461
f: 0.0010000000475
1462
}
1463
}
1464
}
1465
node {
1466
name: "FeatureExtractor/MobilenetV2/expanded_conv_8/depthwise/Relu6"
1467
op: "Relu6"
1468
input: "FeatureExtractor/MobilenetV2/expanded_conv_8/depthwise/BatchNorm/batchnorm/add_1"
1469
}
1470
node {
1471
name: "FeatureExtractor/MobilenetV2/expanded_conv_8/project/Conv2D"
1472
op: "Conv2D"
1473
input: "FeatureExtractor/MobilenetV2/expanded_conv_8/depthwise/Relu6"
1474
input: "FeatureExtractor/MobilenetV2/expanded_conv_8/project/weights"
1475
attr {
1476
key: "dilations"
1477
value {
1478
list {
1479
i: 1
1480
i: 1
1481
i: 1
1482
i: 1
1483
}
1484
}
1485
}
1486
attr {
1487
key: "padding"
1488
value {
1489
s: "SAME"
1490
}
1491
}
1492
attr {
1493
key: "strides"
1494
value {
1495
list {
1496
i: 1
1497
i: 1
1498
i: 1
1499
i: 1
1500
}
1501
}
1502
}
1503
}
1504
node {
1505
name: "FeatureExtractor/MobilenetV2/expanded_conv_8/project/BatchNorm/batchnorm/add_1"
1506
op: "FusedBatchNorm"
1507
input: "FeatureExtractor/MobilenetV2/expanded_conv_8/project/Conv2D"
1508
input: "FeatureExtractor/MobilenetV2/expanded_conv_8/project/BatchNorm/gamma"
1509
input: "FeatureExtractor/MobilenetV2/expanded_conv_8/project/BatchNorm/beta"
1510
input: "FeatureExtractor/MobilenetV2/expanded_conv_8/project/BatchNorm/moving_mean"
1511
input: "FeatureExtractor/MobilenetV2/expanded_conv_8/project/BatchNorm/moving_variance"
1512
attr {
1513
key: "epsilon"
1514
value {
1515
f: 0.0010000000475
1516
}
1517
}
1518
}
1519
node {
1520
name: "FeatureExtractor/MobilenetV2/expanded_conv_8/add"
1521
op: "Add"
1522
input: "FeatureExtractor/MobilenetV2/expanded_conv_8/project/BatchNorm/batchnorm/add_1"
1523
input: "FeatureExtractor/MobilenetV2/expanded_conv_8/input"
1524
}
1525
node {
1526
name: "FeatureExtractor/MobilenetV2/expanded_conv_9/input"
1527
op: "Identity"
1528
input: "FeatureExtractor/MobilenetV2/expanded_conv_8/add"
1529
}
1530
node {
1531
name: "FeatureExtractor/MobilenetV2/expanded_conv_9/expand/Conv2D"
1532
op: "Conv2D"
1533
input: "FeatureExtractor/MobilenetV2/expanded_conv_9/input"
1534
input: "FeatureExtractor/MobilenetV2/expanded_conv_9/expand/weights"
1535
attr {
1536
key: "dilations"
1537
value {
1538
list {
1539
i: 1
1540
i: 1
1541
i: 1
1542
i: 1
1543
}
1544
}
1545
}
1546
attr {
1547
key: "padding"
1548
value {
1549
s: "SAME"
1550
}
1551
}
1552
attr {
1553
key: "strides"
1554
value {
1555
list {
1556
i: 1
1557
i: 1
1558
i: 1
1559
i: 1
1560
}
1561
}
1562
}
1563
}
1564
node {
1565
name: "FeatureExtractor/MobilenetV2/expanded_conv_9/expand/BatchNorm/batchnorm/add_1"
1566
op: "FusedBatchNorm"
1567
input: "FeatureExtractor/MobilenetV2/expanded_conv_9/expand/Conv2D"
1568
input: "FeatureExtractor/MobilenetV2/expanded_conv_9/expand/BatchNorm/gamma"
1569
input: "FeatureExtractor/MobilenetV2/expanded_conv_9/expand/BatchNorm/beta"
1570
input: "FeatureExtractor/MobilenetV2/expanded_conv_9/expand/BatchNorm/moving_mean"
1571
input: "FeatureExtractor/MobilenetV2/expanded_conv_9/expand/BatchNorm/moving_variance"
1572
attr {
1573
key: "epsilon"
1574
value {
1575
f: 0.0010000000475
1576
}
1577
}
1578
}
1579
node {
1580
name: "FeatureExtractor/MobilenetV2/expanded_conv_9/expand/Relu6"
1581
op: "Relu6"
1582
input: "FeatureExtractor/MobilenetV2/expanded_conv_9/expand/BatchNorm/batchnorm/add_1"
1583
}
1584
node {
1585
name: "FeatureExtractor/MobilenetV2/expanded_conv_9/depthwise/depthwise"
1586
op: "DepthwiseConv2dNative"
1587
input: "FeatureExtractor/MobilenetV2/expanded_conv_9/expand/Relu6"
1588
input: "FeatureExtractor/MobilenetV2/expanded_conv_9/depthwise/depthwise_weights"
1589
attr {
1590
key: "dilations"
1591
value {
1592
list {
1593
i: 1
1594
i: 1
1595
i: 1
1596
i: 1
1597
}
1598
}
1599
}
1600
attr {
1601
key: "padding"
1602
value {
1603
s: "SAME"
1604
}
1605
}
1606
attr {
1607
key: "strides"
1608
value {
1609
list {
1610
i: 1
1611
i: 1
1612
i: 1
1613
i: 1
1614
}
1615
}
1616
}
1617
}
1618
node {
1619
name: "FeatureExtractor/MobilenetV2/expanded_conv_9/depthwise/BatchNorm/batchnorm/add_1"
1620
op: "FusedBatchNorm"
1621
input: "FeatureExtractor/MobilenetV2/expanded_conv_9/depthwise/depthwise"
1622
input: "FeatureExtractor/MobilenetV2/expanded_conv_9/depthwise/BatchNorm/gamma"
1623
input: "FeatureExtractor/MobilenetV2/expanded_conv_9/depthwise/BatchNorm/beta"
1624
input: "FeatureExtractor/MobilenetV2/expanded_conv_9/depthwise/BatchNorm/moving_mean"
1625
input: "FeatureExtractor/MobilenetV2/expanded_conv_9/depthwise/BatchNorm/moving_variance"
1626
attr {
1627
key: "epsilon"
1628
value {
1629
f: 0.0010000000475
1630
}
1631
}
1632
}
1633
node {
1634
name: "FeatureExtractor/MobilenetV2/expanded_conv_9/depthwise/Relu6"
1635
op: "Relu6"
1636
input: "FeatureExtractor/MobilenetV2/expanded_conv_9/depthwise/BatchNorm/batchnorm/add_1"
1637
}
1638
node {
1639
name: "FeatureExtractor/MobilenetV2/expanded_conv_9/project/Conv2D"
1640
op: "Conv2D"
1641
input: "FeatureExtractor/MobilenetV2/expanded_conv_9/depthwise/Relu6"
1642
input: "FeatureExtractor/MobilenetV2/expanded_conv_9/project/weights"
1643
attr {
1644
key: "dilations"
1645
value {
1646
list {
1647
i: 1
1648
i: 1
1649
i: 1
1650
i: 1
1651
}
1652
}
1653
}
1654
attr {
1655
key: "padding"
1656
value {
1657
s: "SAME"
1658
}
1659
}
1660
attr {
1661
key: "strides"
1662
value {
1663
list {
1664
i: 1
1665
i: 1
1666
i: 1
1667
i: 1
1668
}
1669
}
1670
}
1671
}
1672
node {
1673
name: "FeatureExtractor/MobilenetV2/expanded_conv_9/project/BatchNorm/batchnorm/add_1"
1674
op: "FusedBatchNorm"
1675
input: "FeatureExtractor/MobilenetV2/expanded_conv_9/project/Conv2D"
1676
input: "FeatureExtractor/MobilenetV2/expanded_conv_9/project/BatchNorm/gamma"
1677
input: "FeatureExtractor/MobilenetV2/expanded_conv_9/project/BatchNorm/beta"
1678
input: "FeatureExtractor/MobilenetV2/expanded_conv_9/project/BatchNorm/moving_mean"
1679
input: "FeatureExtractor/MobilenetV2/expanded_conv_9/project/BatchNorm/moving_variance"
1680
attr {
1681
key: "epsilon"
1682
value {
1683
f: 0.0010000000475
1684
}
1685
}
1686
}
1687
node {
1688
name: "FeatureExtractor/MobilenetV2/expanded_conv_9/add"
1689
op: "Add"
1690
input: "FeatureExtractor/MobilenetV2/expanded_conv_9/project/BatchNorm/batchnorm/add_1"
1691
input: "FeatureExtractor/MobilenetV2/expanded_conv_9/input"
1692
}
1693
node {
1694
name: "FeatureExtractor/MobilenetV2/expanded_conv_10/input"
1695
op: "Identity"
1696
input: "FeatureExtractor/MobilenetV2/expanded_conv_9/add"
1697
}
1698
node {
1699
name: "FeatureExtractor/MobilenetV2/expanded_conv_10/expand/Conv2D"
1700
op: "Conv2D"
1701
input: "FeatureExtractor/MobilenetV2/expanded_conv_10/input"
1702
input: "FeatureExtractor/MobilenetV2/expanded_conv_10/expand/weights"
1703
attr {
1704
key: "dilations"
1705
value {
1706
list {
1707
i: 1
1708
i: 1
1709
i: 1
1710
i: 1
1711
}
1712
}
1713
}
1714
attr {
1715
key: "padding"
1716
value {
1717
s: "SAME"
1718
}
1719
}
1720
attr {
1721
key: "strides"
1722
value {
1723
list {
1724
i: 1
1725
i: 1
1726
i: 1
1727
i: 1
1728
}
1729
}
1730
}
1731
}
1732
node {
1733
name: "FeatureExtractor/MobilenetV2/expanded_conv_10/expand/BatchNorm/batchnorm/add_1"
1734
op: "FusedBatchNorm"
1735
input: "FeatureExtractor/MobilenetV2/expanded_conv_10/expand/Conv2D"
1736
input: "FeatureExtractor/MobilenetV2/expanded_conv_10/expand/BatchNorm/gamma"
1737
input: "FeatureExtractor/MobilenetV2/expanded_conv_10/expand/BatchNorm/beta"
1738
input: "FeatureExtractor/MobilenetV2/expanded_conv_10/expand/BatchNorm/moving_mean"
1739
input: "FeatureExtractor/MobilenetV2/expanded_conv_10/expand/BatchNorm/moving_variance"
1740
attr {
1741
key: "epsilon"
1742
value {
1743
f: 0.0010000000475
1744
}
1745
}
1746
}
1747
node {
1748
name: "FeatureExtractor/MobilenetV2/expanded_conv_10/expand/Relu6"
1749
op: "Relu6"
1750
input: "FeatureExtractor/MobilenetV2/expanded_conv_10/expand/BatchNorm/batchnorm/add_1"
1751
}
1752
node {
1753
name: "FeatureExtractor/MobilenetV2/expanded_conv_10/depthwise/depthwise"
1754
op: "DepthwiseConv2dNative"
1755
input: "FeatureExtractor/MobilenetV2/expanded_conv_10/expand/Relu6"
1756
input: "FeatureExtractor/MobilenetV2/expanded_conv_10/depthwise/depthwise_weights"
1757
attr {
1758
key: "dilations"
1759
value {
1760
list {
1761
i: 1
1762
i: 1
1763
i: 1
1764
i: 1
1765
}
1766
}
1767
}
1768
attr {
1769
key: "padding"
1770
value {
1771
s: "SAME"
1772
}
1773
}
1774
attr {
1775
key: "strides"
1776
value {
1777
list {
1778
i: 1
1779
i: 1
1780
i: 1
1781
i: 1
1782
}
1783
}
1784
}
1785
}
1786
node {
1787
name: "FeatureExtractor/MobilenetV2/expanded_conv_10/depthwise/BatchNorm/batchnorm/add_1"
1788
op: "FusedBatchNorm"
1789
input: "FeatureExtractor/MobilenetV2/expanded_conv_10/depthwise/depthwise"
1790
input: "FeatureExtractor/MobilenetV2/expanded_conv_10/depthwise/BatchNorm/gamma"
1791
input: "FeatureExtractor/MobilenetV2/expanded_conv_10/depthwise/BatchNorm/beta"
1792
input: "FeatureExtractor/MobilenetV2/expanded_conv_10/depthwise/BatchNorm/moving_mean"
1793
input: "FeatureExtractor/MobilenetV2/expanded_conv_10/depthwise/BatchNorm/moving_variance"
1794
attr {
1795
key: "epsilon"
1796
value {
1797
f: 0.0010000000475
1798
}
1799
}
1800
}
1801
node {
1802
name: "FeatureExtractor/MobilenetV2/expanded_conv_10/depthwise/Relu6"
1803
op: "Relu6"
1804
input: "FeatureExtractor/MobilenetV2/expanded_conv_10/depthwise/BatchNorm/batchnorm/add_1"
1805
}
1806
node {
1807
name: "FeatureExtractor/MobilenetV2/expanded_conv_10/project/Conv2D"
1808
op: "Conv2D"
1809
input: "FeatureExtractor/MobilenetV2/expanded_conv_10/depthwise/Relu6"
1810
input: "FeatureExtractor/MobilenetV2/expanded_conv_10/project/weights"
1811
attr {
1812
key: "dilations"
1813
value {
1814
list {
1815
i: 1
1816
i: 1
1817
i: 1
1818
i: 1
1819
}
1820
}
1821
}
1822
attr {
1823
key: "padding"
1824
value {
1825
s: "SAME"
1826
}
1827
}
1828
attr {
1829
key: "strides"
1830
value {
1831
list {
1832
i: 1
1833
i: 1
1834
i: 1
1835
i: 1
1836
}
1837
}
1838
}
1839
}
1840
node {
1841
name: "FeatureExtractor/MobilenetV2/expanded_conv_10/project/BatchNorm/batchnorm/add_1"
1842
op: "FusedBatchNorm"
1843
input: "FeatureExtractor/MobilenetV2/expanded_conv_10/project/Conv2D"
1844
input: "FeatureExtractor/MobilenetV2/expanded_conv_10/project/BatchNorm/gamma"
1845
input: "FeatureExtractor/MobilenetV2/expanded_conv_10/project/BatchNorm/beta"
1846
input: "FeatureExtractor/MobilenetV2/expanded_conv_10/project/BatchNorm/moving_mean"
1847
input: "FeatureExtractor/MobilenetV2/expanded_conv_10/project/BatchNorm/moving_variance"
1848
attr {
1849
key: "epsilon"
1850
value {
1851
f: 0.0010000000475
1852
}
1853
}
1854
}
1855
node {
1856
name: "FeatureExtractor/MobilenetV2/expanded_conv_10/output"
1857
op: "Identity"
1858
input: "FeatureExtractor/MobilenetV2/expanded_conv_10/project/BatchNorm/batchnorm/add_1"
1859
}
1860
node {
1861
name: "FeatureExtractor/MobilenetV2/expanded_conv_11/expand/Conv2D"
1862
op: "Conv2D"
1863
input: "FeatureExtractor/MobilenetV2/expanded_conv_10/output"
1864
input: "FeatureExtractor/MobilenetV2/expanded_conv_11/expand/weights"
1865
attr {
1866
key: "dilations"
1867
value {
1868
list {
1869
i: 1
1870
i: 1
1871
i: 1
1872
i: 1
1873
}
1874
}
1875
}
1876
attr {
1877
key: "padding"
1878
value {
1879
s: "SAME"
1880
}
1881
}
1882
attr {
1883
key: "strides"
1884
value {
1885
list {
1886
i: 1
1887
i: 1
1888
i: 1
1889
i: 1
1890
}
1891
}
1892
}
1893
}
1894
node {
1895
name: "FeatureExtractor/MobilenetV2/expanded_conv_11/expand/BatchNorm/batchnorm/add_1"
1896
op: "FusedBatchNorm"
1897
input: "FeatureExtractor/MobilenetV2/expanded_conv_11/expand/Conv2D"
1898
input: "FeatureExtractor/MobilenetV2/expanded_conv_11/expand/BatchNorm/gamma"
1899
input: "FeatureExtractor/MobilenetV2/expanded_conv_11/expand/BatchNorm/beta"
1900
input: "FeatureExtractor/MobilenetV2/expanded_conv_11/expand/BatchNorm/moving_mean"
1901
input: "FeatureExtractor/MobilenetV2/expanded_conv_11/expand/BatchNorm/moving_variance"
1902
attr {
1903
key: "epsilon"
1904
value {
1905
f: 0.0010000000475
1906
}
1907
}
1908
}
1909
node {
1910
name: "FeatureExtractor/MobilenetV2/expanded_conv_11/expand/Relu6"
1911
op: "Relu6"
1912
input: "FeatureExtractor/MobilenetV2/expanded_conv_11/expand/BatchNorm/batchnorm/add_1"
1913
}
1914
node {
1915
name: "FeatureExtractor/MobilenetV2/expanded_conv_11/depthwise/depthwise"
1916
op: "DepthwiseConv2dNative"
1917
input: "FeatureExtractor/MobilenetV2/expanded_conv_11/expand/Relu6"
1918
input: "FeatureExtractor/MobilenetV2/expanded_conv_11/depthwise/depthwise_weights"
1919
attr {
1920
key: "dilations"
1921
value {
1922
list {
1923
i: 1
1924
i: 1
1925
i: 1
1926
i: 1
1927
}
1928
}
1929
}
1930
attr {
1931
key: "padding"
1932
value {
1933
s: "SAME"
1934
}
1935
}
1936
attr {
1937
key: "strides"
1938
value {
1939
list {
1940
i: 1
1941
i: 1
1942
i: 1
1943
i: 1
1944
}
1945
}
1946
}
1947
}
1948
node {
1949
name: "FeatureExtractor/MobilenetV2/expanded_conv_11/depthwise/BatchNorm/batchnorm/add_1"
1950
op: "FusedBatchNorm"
1951
input: "FeatureExtractor/MobilenetV2/expanded_conv_11/depthwise/depthwise"
1952
input: "FeatureExtractor/MobilenetV2/expanded_conv_11/depthwise/BatchNorm/gamma"
1953
input: "FeatureExtractor/MobilenetV2/expanded_conv_11/depthwise/BatchNorm/beta"
1954
input: "FeatureExtractor/MobilenetV2/expanded_conv_11/depthwise/BatchNorm/moving_mean"
1955
input: "FeatureExtractor/MobilenetV2/expanded_conv_11/depthwise/BatchNorm/moving_variance"
1956
attr {
1957
key: "epsilon"
1958
value {
1959
f: 0.0010000000475
1960
}
1961
}
1962
}
1963
node {
1964
name: "FeatureExtractor/MobilenetV2/expanded_conv_11/depthwise/Relu6"
1965
op: "Relu6"
1966
input: "FeatureExtractor/MobilenetV2/expanded_conv_11/depthwise/BatchNorm/batchnorm/add_1"
1967
}
1968
node {
1969
name: "FeatureExtractor/MobilenetV2/expanded_conv_11/project/Conv2D"
1970
op: "Conv2D"
1971
input: "FeatureExtractor/MobilenetV2/expanded_conv_11/depthwise/Relu6"
1972
input: "FeatureExtractor/MobilenetV2/expanded_conv_11/project/weights"
1973
attr {
1974
key: "dilations"
1975
value {
1976
list {
1977
i: 1
1978
i: 1
1979
i: 1
1980
i: 1
1981
}
1982
}
1983
}
1984
attr {
1985
key: "padding"
1986
value {
1987
s: "SAME"
1988
}
1989
}
1990
attr {
1991
key: "strides"
1992
value {
1993
list {
1994
i: 1
1995
i: 1
1996
i: 1
1997
i: 1
1998
}
1999
}
2000
}
2001
}
2002
node {
2003
name: "FeatureExtractor/MobilenetV2/expanded_conv_11/project/BatchNorm/batchnorm/add_1"
2004
op: "FusedBatchNorm"
2005
input: "FeatureExtractor/MobilenetV2/expanded_conv_11/project/Conv2D"
2006
input: "FeatureExtractor/MobilenetV2/expanded_conv_11/project/BatchNorm/gamma"
2007
input: "FeatureExtractor/MobilenetV2/expanded_conv_11/project/BatchNorm/beta"
2008
input: "FeatureExtractor/MobilenetV2/expanded_conv_11/project/BatchNorm/moving_mean"
2009
input: "FeatureExtractor/MobilenetV2/expanded_conv_11/project/BatchNorm/moving_variance"
2010
attr {
2011
key: "epsilon"
2012
value {
2013
f: 0.0010000000475
2014
}
2015
}
2016
}
2017
node {
2018
name: "FeatureExtractor/MobilenetV2/expanded_conv_11/add"
2019
op: "Add"
2020
input: "FeatureExtractor/MobilenetV2/expanded_conv_11/project/BatchNorm/batchnorm/add_1"
2021
input: "FeatureExtractor/MobilenetV2/expanded_conv_10/output"
2022
}
2023
node {
2024
name: "FeatureExtractor/MobilenetV2/expanded_conv_12/input"
2025
op: "Identity"
2026
input: "FeatureExtractor/MobilenetV2/expanded_conv_11/add"
2027
}
2028
node {
2029
name: "FeatureExtractor/MobilenetV2/expanded_conv_12/expand/Conv2D"
2030
op: "Conv2D"
2031
input: "FeatureExtractor/MobilenetV2/expanded_conv_12/input"
2032
input: "FeatureExtractor/MobilenetV2/expanded_conv_12/expand/weights"
2033
attr {
2034
key: "dilations"
2035
value {
2036
list {
2037
i: 1
2038
i: 1
2039
i: 1
2040
i: 1
2041
}
2042
}
2043
}
2044
attr {
2045
key: "padding"
2046
value {
2047
s: "SAME"
2048
}
2049
}
2050
attr {
2051
key: "strides"
2052
value {
2053
list {
2054
i: 1
2055
i: 1
2056
i: 1
2057
i: 1
2058
}
2059
}
2060
}
2061
}
2062
node {
2063
name: "FeatureExtractor/MobilenetV2/expanded_conv_12/expand/BatchNorm/batchnorm/add_1"
2064
op: "FusedBatchNorm"
2065
input: "FeatureExtractor/MobilenetV2/expanded_conv_12/expand/Conv2D"
2066
input: "FeatureExtractor/MobilenetV2/expanded_conv_12/expand/BatchNorm/gamma"
2067
input: "FeatureExtractor/MobilenetV2/expanded_conv_12/expand/BatchNorm/beta"
2068
input: "FeatureExtractor/MobilenetV2/expanded_conv_12/expand/BatchNorm/moving_mean"
2069
input: "FeatureExtractor/MobilenetV2/expanded_conv_12/expand/BatchNorm/moving_variance"
2070
attr {
2071
key: "epsilon"
2072
value {
2073
f: 0.0010000000475
2074
}
2075
}
2076
}
2077
node {
2078
name: "FeatureExtractor/MobilenetV2/expanded_conv_12/expand/Relu6"
2079
op: "Relu6"
2080
input: "FeatureExtractor/MobilenetV2/expanded_conv_12/expand/BatchNorm/batchnorm/add_1"
2081
}
2082
node {
2083
name: "FeatureExtractor/MobilenetV2/expanded_conv_12/depthwise/depthwise"
2084
op: "DepthwiseConv2dNative"
2085
input: "FeatureExtractor/MobilenetV2/expanded_conv_12/expand/Relu6"
2086
input: "FeatureExtractor/MobilenetV2/expanded_conv_12/depthwise/depthwise_weights"
2087
attr {
2088
key: "dilations"
2089
value {
2090
list {
2091
i: 1
2092
i: 1
2093
i: 1
2094
i: 1
2095
}
2096
}
2097
}
2098
attr {
2099
key: "padding"
2100
value {
2101
s: "SAME"
2102
}
2103
}
2104
attr {
2105
key: "strides"
2106
value {
2107
list {
2108
i: 1
2109
i: 1
2110
i: 1
2111
i: 1
2112
}
2113
}
2114
}
2115
}
2116
node {
2117
name: "FeatureExtractor/MobilenetV2/expanded_conv_12/depthwise/BatchNorm/batchnorm/add_1"
2118
op: "FusedBatchNorm"
2119
input: "FeatureExtractor/MobilenetV2/expanded_conv_12/depthwise/depthwise"
2120
input: "FeatureExtractor/MobilenetV2/expanded_conv_12/depthwise/BatchNorm/gamma"
2121
input: "FeatureExtractor/MobilenetV2/expanded_conv_12/depthwise/BatchNorm/beta"
2122
input: "FeatureExtractor/MobilenetV2/expanded_conv_12/depthwise/BatchNorm/moving_mean"
2123
input: "FeatureExtractor/MobilenetV2/expanded_conv_12/depthwise/BatchNorm/moving_variance"
2124
attr {
2125
key: "epsilon"
2126
value {
2127
f: 0.0010000000475
2128
}
2129
}
2130
}
2131
node {
2132
name: "FeatureExtractor/MobilenetV2/expanded_conv_12/depthwise/Relu6"
2133
op: "Relu6"
2134
input: "FeatureExtractor/MobilenetV2/expanded_conv_12/depthwise/BatchNorm/batchnorm/add_1"
2135
}
2136
node {
2137
name: "FeatureExtractor/MobilenetV2/expanded_conv_12/project/Conv2D"
2138
op: "Conv2D"
2139
input: "FeatureExtractor/MobilenetV2/expanded_conv_12/depthwise/Relu6"
2140
input: "FeatureExtractor/MobilenetV2/expanded_conv_12/project/weights"
2141
attr {
2142
key: "dilations"
2143
value {
2144
list {
2145
i: 1
2146
i: 1
2147
i: 1
2148
i: 1
2149
}
2150
}
2151
}
2152
attr {
2153
key: "padding"
2154
value {
2155
s: "SAME"
2156
}
2157
}
2158
attr {
2159
key: "strides"
2160
value {
2161
list {
2162
i: 1
2163
i: 1
2164
i: 1
2165
i: 1
2166
}
2167
}
2168
}
2169
}
2170
node {
2171
name: "FeatureExtractor/MobilenetV2/expanded_conv_12/project/BatchNorm/batchnorm/add_1"
2172
op: "FusedBatchNorm"
2173
input: "FeatureExtractor/MobilenetV2/expanded_conv_12/project/Conv2D"
2174
input: "FeatureExtractor/MobilenetV2/expanded_conv_12/project/BatchNorm/gamma"
2175
input: "FeatureExtractor/MobilenetV2/expanded_conv_12/project/BatchNorm/beta"
2176
input: "FeatureExtractor/MobilenetV2/expanded_conv_12/project/BatchNorm/moving_mean"
2177
input: "FeatureExtractor/MobilenetV2/expanded_conv_12/project/BatchNorm/moving_variance"
2178
attr {
2179
key: "epsilon"
2180
value {
2181
f: 0.0010000000475
2182
}
2183
}
2184
}
2185
node {
2186
name: "FeatureExtractor/MobilenetV2/expanded_conv_12/add"
2187
op: "Add"
2188
input: "FeatureExtractor/MobilenetV2/expanded_conv_12/project/BatchNorm/batchnorm/add_1"
2189
input: "FeatureExtractor/MobilenetV2/expanded_conv_12/input"
2190
}
2191
node {
2192
name: "FeatureExtractor/MobilenetV2/expanded_conv_13/input"
2193
op: "Identity"
2194
input: "FeatureExtractor/MobilenetV2/expanded_conv_12/add"
2195
}
2196
node {
2197
name: "FeatureExtractor/MobilenetV2/expanded_conv_13/expand/Conv2D"
2198
op: "Conv2D"
2199
input: "FeatureExtractor/MobilenetV2/expanded_conv_13/input"
2200
input: "FeatureExtractor/MobilenetV2/expanded_conv_13/expand/weights"
2201
attr {
2202
key: "dilations"
2203
value {
2204
list {
2205
i: 1
2206
i: 1
2207
i: 1
2208
i: 1
2209
}
2210
}
2211
}
2212
attr {
2213
key: "padding"
2214
value {
2215
s: "SAME"
2216
}
2217
}
2218
attr {
2219
key: "strides"
2220
value {
2221
list {
2222
i: 1
2223
i: 1
2224
i: 1
2225
i: 1
2226
}
2227
}
2228
}
2229
}
2230
node {
2231
name: "FeatureExtractor/MobilenetV2/expanded_conv_13/expand/BatchNorm/batchnorm/add_1"
2232
op: "FusedBatchNorm"
2233
input: "FeatureExtractor/MobilenetV2/expanded_conv_13/expand/Conv2D"
2234
input: "FeatureExtractor/MobilenetV2/expanded_conv_13/expand/BatchNorm/gamma"
2235
input: "FeatureExtractor/MobilenetV2/expanded_conv_13/expand/BatchNorm/beta"
2236
input: "FeatureExtractor/MobilenetV2/expanded_conv_13/expand/BatchNorm/moving_mean"
2237
input: "FeatureExtractor/MobilenetV2/expanded_conv_13/expand/BatchNorm/moving_variance"
2238
attr {
2239
key: "epsilon"
2240
value {
2241
f: 0.0010000000475
2242
}
2243
}
2244
}
2245
node {
2246
name: "FeatureExtractor/MobilenetV2/expanded_conv_13/expand/Relu6"
2247
op: "Relu6"
2248
input: "FeatureExtractor/MobilenetV2/expanded_conv_13/expand/BatchNorm/batchnorm/add_1"
2249
}
2250
node {
2251
name: "FeatureExtractor/MobilenetV2/expanded_conv_13/depthwise/depthwise"
2252
op: "DepthwiseConv2dNative"
2253
input: "FeatureExtractor/MobilenetV2/expanded_conv_13/expand/Relu6"
2254
input: "FeatureExtractor/MobilenetV2/expanded_conv_13/depthwise/depthwise_weights"
2255
attr {
2256
key: "dilations"
2257
value {
2258
list {
2259
i: 1
2260
i: 1
2261
i: 1
2262
i: 1
2263
}
2264
}
2265
}
2266
attr {
2267
key: "padding"
2268
value {
2269
s: "SAME"
2270
}
2271
}
2272
attr {
2273
key: "strides"
2274
value {
2275
list {
2276
i: 1
2277
i: 2
2278
i: 2
2279
i: 1
2280
}
2281
}
2282
}
2283
}
2284
node {
2285
name: "FeatureExtractor/MobilenetV2/expanded_conv_13/depthwise/BatchNorm/batchnorm/add_1"
2286
op: "FusedBatchNorm"
2287
input: "FeatureExtractor/MobilenetV2/expanded_conv_13/depthwise/depthwise"
2288
input: "FeatureExtractor/MobilenetV2/expanded_conv_13/depthwise/BatchNorm/gamma"
2289
input: "FeatureExtractor/MobilenetV2/expanded_conv_13/depthwise/BatchNorm/beta"
2290
input: "FeatureExtractor/MobilenetV2/expanded_conv_13/depthwise/BatchNorm/moving_mean"
2291
input: "FeatureExtractor/MobilenetV2/expanded_conv_13/depthwise/BatchNorm/moving_variance"
2292
attr {
2293
key: "epsilon"
2294
value {
2295
f: 0.0010000000475
2296
}
2297
}
2298
}
2299
node {
2300
name: "FeatureExtractor/MobilenetV2/expanded_conv_13/depthwise/Relu6"
2301
op: "Relu6"
2302
input: "FeatureExtractor/MobilenetV2/expanded_conv_13/depthwise/BatchNorm/batchnorm/add_1"
2303
}
2304
node {
2305
name: "FeatureExtractor/MobilenetV2/expanded_conv_13/project/Conv2D"
2306
op: "Conv2D"
2307
input: "FeatureExtractor/MobilenetV2/expanded_conv_13/depthwise/Relu6"
2308
input: "FeatureExtractor/MobilenetV2/expanded_conv_13/project/weights"
2309
attr {
2310
key: "dilations"
2311
value {
2312
list {
2313
i: 1
2314
i: 1
2315
i: 1
2316
i: 1
2317
}
2318
}
2319
}
2320
attr {
2321
key: "padding"
2322
value {
2323
s: "SAME"
2324
}
2325
}
2326
attr {
2327
key: "strides"
2328
value {
2329
list {
2330
i: 1
2331
i: 1
2332
i: 1
2333
i: 1
2334
}
2335
}
2336
}
2337
}
2338
node {
2339
name: "FeatureExtractor/MobilenetV2/expanded_conv_13/project/BatchNorm/batchnorm/add_1"
2340
op: "FusedBatchNorm"
2341
input: "FeatureExtractor/MobilenetV2/expanded_conv_13/project/Conv2D"
2342
input: "FeatureExtractor/MobilenetV2/expanded_conv_13/project/BatchNorm/gamma"
2343
input: "FeatureExtractor/MobilenetV2/expanded_conv_13/project/BatchNorm/beta"
2344
input: "FeatureExtractor/MobilenetV2/expanded_conv_13/project/BatchNorm/moving_mean"
2345
input: "FeatureExtractor/MobilenetV2/expanded_conv_13/project/BatchNorm/moving_variance"
2346
attr {
2347
key: "epsilon"
2348
value {
2349
f: 0.0010000000475
2350
}
2351
}
2352
}
2353
node {
2354
name: "FeatureExtractor/MobilenetV2/expanded_conv_13/output"
2355
op: "Identity"
2356
input: "FeatureExtractor/MobilenetV2/expanded_conv_13/project/BatchNorm/batchnorm/add_1"
2357
}
2358
node {
2359
name: "FeatureExtractor/MobilenetV2/expanded_conv_14/expand/Conv2D"
2360
op: "Conv2D"
2361
input: "FeatureExtractor/MobilenetV2/expanded_conv_13/output"
2362
input: "FeatureExtractor/MobilenetV2/expanded_conv_14/expand/weights"
2363
attr {
2364
key: "dilations"
2365
value {
2366
list {
2367
i: 1
2368
i: 1
2369
i: 1
2370
i: 1
2371
}
2372
}
2373
}
2374
attr {
2375
key: "padding"
2376
value {
2377
s: "SAME"
2378
}
2379
}
2380
attr {
2381
key: "strides"
2382
value {
2383
list {
2384
i: 1
2385
i: 1
2386
i: 1
2387
i: 1
2388
}
2389
}
2390
}
2391
}
2392
node {
2393
name: "FeatureExtractor/MobilenetV2/expanded_conv_14/expand/BatchNorm/batchnorm/add_1"
2394
op: "FusedBatchNorm"
2395
input: "FeatureExtractor/MobilenetV2/expanded_conv_14/expand/Conv2D"
2396
input: "FeatureExtractor/MobilenetV2/expanded_conv_14/expand/BatchNorm/gamma"
2397
input: "FeatureExtractor/MobilenetV2/expanded_conv_14/expand/BatchNorm/beta"
2398
input: "FeatureExtractor/MobilenetV2/expanded_conv_14/expand/BatchNorm/moving_mean"
2399
input: "FeatureExtractor/MobilenetV2/expanded_conv_14/expand/BatchNorm/moving_variance"
2400
attr {
2401
key: "epsilon"
2402
value {
2403
f: 0.0010000000475
2404
}
2405
}
2406
}
2407
node {
2408
name: "FeatureExtractor/MobilenetV2/expanded_conv_14/expand/Relu6"
2409
op: "Relu6"
2410
input: "FeatureExtractor/MobilenetV2/expanded_conv_14/expand/BatchNorm/batchnorm/add_1"
2411
}
2412
node {
2413
name: "FeatureExtractor/MobilenetV2/expanded_conv_14/depthwise/depthwise"
2414
op: "DepthwiseConv2dNative"
2415
input: "FeatureExtractor/MobilenetV2/expanded_conv_14/expand/Relu6"
2416
input: "FeatureExtractor/MobilenetV2/expanded_conv_14/depthwise/depthwise_weights"
2417
attr {
2418
key: "dilations"
2419
value {
2420
list {
2421
i: 1
2422
i: 1
2423
i: 1
2424
i: 1
2425
}
2426
}
2427
}
2428
attr {
2429
key: "padding"
2430
value {
2431
s: "SAME"
2432
}
2433
}
2434
attr {
2435
key: "strides"
2436
value {
2437
list {
2438
i: 1
2439
i: 1
2440
i: 1
2441
i: 1
2442
}
2443
}
2444
}
2445
}
2446
node {
2447
name: "FeatureExtractor/MobilenetV2/expanded_conv_14/depthwise/BatchNorm/batchnorm/add_1"
2448
op: "FusedBatchNorm"
2449
input: "FeatureExtractor/MobilenetV2/expanded_conv_14/depthwise/depthwise"
2450
input: "FeatureExtractor/MobilenetV2/expanded_conv_14/depthwise/BatchNorm/gamma"
2451
input: "FeatureExtractor/MobilenetV2/expanded_conv_14/depthwise/BatchNorm/beta"
2452
input: "FeatureExtractor/MobilenetV2/expanded_conv_14/depthwise/BatchNorm/moving_mean"
2453
input: "FeatureExtractor/MobilenetV2/expanded_conv_14/depthwise/BatchNorm/moving_variance"
2454
attr {
2455
key: "epsilon"
2456
value {
2457
f: 0.0010000000475
2458
}
2459
}
2460
}
2461
node {
2462
name: "FeatureExtractor/MobilenetV2/expanded_conv_14/depthwise/Relu6"
2463
op: "Relu6"
2464
input: "FeatureExtractor/MobilenetV2/expanded_conv_14/depthwise/BatchNorm/batchnorm/add_1"
2465
}
2466
node {
2467
name: "FeatureExtractor/MobilenetV2/expanded_conv_14/project/Conv2D"
2468
op: "Conv2D"
2469
input: "FeatureExtractor/MobilenetV2/expanded_conv_14/depthwise/Relu6"
2470
input: "FeatureExtractor/MobilenetV2/expanded_conv_14/project/weights"
2471
attr {
2472
key: "dilations"
2473
value {
2474
list {
2475
i: 1
2476
i: 1
2477
i: 1
2478
i: 1
2479
}
2480
}
2481
}
2482
attr {
2483
key: "padding"
2484
value {
2485
s: "SAME"
2486
}
2487
}
2488
attr {
2489
key: "strides"
2490
value {
2491
list {
2492
i: 1
2493
i: 1
2494
i: 1
2495
i: 1
2496
}
2497
}
2498
}
2499
}
2500
node {
2501
name: "FeatureExtractor/MobilenetV2/expanded_conv_14/project/BatchNorm/batchnorm/add_1"
2502
op: "FusedBatchNorm"
2503
input: "FeatureExtractor/MobilenetV2/expanded_conv_14/project/Conv2D"
2504
input: "FeatureExtractor/MobilenetV2/expanded_conv_14/project/BatchNorm/gamma"
2505
input: "FeatureExtractor/MobilenetV2/expanded_conv_14/project/BatchNorm/beta"
2506
input: "FeatureExtractor/MobilenetV2/expanded_conv_14/project/BatchNorm/moving_mean"
2507
input: "FeatureExtractor/MobilenetV2/expanded_conv_14/project/BatchNorm/moving_variance"
2508
attr {
2509
key: "epsilon"
2510
value {
2511
f: 0.0010000000475
2512
}
2513
}
2514
}
2515
node {
2516
name: "FeatureExtractor/MobilenetV2/expanded_conv_14/add"
2517
op: "Add"
2518
input: "FeatureExtractor/MobilenetV2/expanded_conv_14/project/BatchNorm/batchnorm/add_1"
2519
input: "FeatureExtractor/MobilenetV2/expanded_conv_13/output"
2520
}
2521
node {
2522
name: "FeatureExtractor/MobilenetV2/expanded_conv_15/input"
2523
op: "Identity"
2524
input: "FeatureExtractor/MobilenetV2/expanded_conv_14/add"
2525
}
2526
node {
2527
name: "FeatureExtractor/MobilenetV2/expanded_conv_15/expand/Conv2D"
2528
op: "Conv2D"
2529
input: "FeatureExtractor/MobilenetV2/expanded_conv_15/input"
2530
input: "FeatureExtractor/MobilenetV2/expanded_conv_15/expand/weights"
2531
attr {
2532
key: "dilations"
2533
value {
2534
list {
2535
i: 1
2536
i: 1
2537
i: 1
2538
i: 1
2539
}
2540
}
2541
}
2542
attr {
2543
key: "padding"
2544
value {
2545
s: "SAME"
2546
}
2547
}
2548
attr {
2549
key: "strides"
2550
value {
2551
list {
2552
i: 1
2553
i: 1
2554
i: 1
2555
i: 1
2556
}
2557
}
2558
}
2559
}
2560
node {
2561
name: "FeatureExtractor/MobilenetV2/expanded_conv_15/expand/BatchNorm/batchnorm/add_1"
2562
op: "FusedBatchNorm"
2563
input: "FeatureExtractor/MobilenetV2/expanded_conv_15/expand/Conv2D"
2564
input: "FeatureExtractor/MobilenetV2/expanded_conv_15/expand/BatchNorm/gamma"
2565
input: "FeatureExtractor/MobilenetV2/expanded_conv_15/expand/BatchNorm/beta"
2566
input: "FeatureExtractor/MobilenetV2/expanded_conv_15/expand/BatchNorm/moving_mean"
2567
input: "FeatureExtractor/MobilenetV2/expanded_conv_15/expand/BatchNorm/moving_variance"
2568
attr {
2569
key: "epsilon"
2570
value {
2571
f: 0.0010000000475
2572
}
2573
}
2574
}
2575
node {
2576
name: "FeatureExtractor/MobilenetV2/expanded_conv_15/expand/Relu6"
2577
op: "Relu6"
2578
input: "FeatureExtractor/MobilenetV2/expanded_conv_15/expand/BatchNorm/batchnorm/add_1"
2579
}
2580
node {
2581
name: "FeatureExtractor/MobilenetV2/expanded_conv_15/depthwise/depthwise"
2582
op: "DepthwiseConv2dNative"
2583
input: "FeatureExtractor/MobilenetV2/expanded_conv_15/expand/Relu6"
2584
input: "FeatureExtractor/MobilenetV2/expanded_conv_15/depthwise/depthwise_weights"
2585
attr {
2586
key: "dilations"
2587
value {
2588
list {
2589
i: 1
2590
i: 1
2591
i: 1
2592
i: 1
2593
}
2594
}
2595
}
2596
attr {
2597
key: "padding"
2598
value {
2599
s: "SAME"
2600
}
2601
}
2602
attr {
2603
key: "strides"
2604
value {
2605
list {
2606
i: 1
2607
i: 1
2608
i: 1
2609
i: 1
2610
}
2611
}
2612
}
2613
}
2614
node {
2615
name: "FeatureExtractor/MobilenetV2/expanded_conv_15/depthwise/BatchNorm/batchnorm/add_1"
2616
op: "FusedBatchNorm"
2617
input: "FeatureExtractor/MobilenetV2/expanded_conv_15/depthwise/depthwise"
2618
input: "FeatureExtractor/MobilenetV2/expanded_conv_15/depthwise/BatchNorm/gamma"
2619
input: "FeatureExtractor/MobilenetV2/expanded_conv_15/depthwise/BatchNorm/beta"
2620
input: "FeatureExtractor/MobilenetV2/expanded_conv_15/depthwise/BatchNorm/moving_mean"
2621
input: "FeatureExtractor/MobilenetV2/expanded_conv_15/depthwise/BatchNorm/moving_variance"
2622
attr {
2623
key: "epsilon"
2624
value {
2625
f: 0.0010000000475
2626
}
2627
}
2628
}
2629
node {
2630
name: "FeatureExtractor/MobilenetV2/expanded_conv_15/depthwise/Relu6"
2631
op: "Relu6"
2632
input: "FeatureExtractor/MobilenetV2/expanded_conv_15/depthwise/BatchNorm/batchnorm/add_1"
2633
}
2634
node {
2635
name: "FeatureExtractor/MobilenetV2/expanded_conv_15/project/Conv2D"
2636
op: "Conv2D"
2637
input: "FeatureExtractor/MobilenetV2/expanded_conv_15/depthwise/Relu6"
2638
input: "FeatureExtractor/MobilenetV2/expanded_conv_15/project/weights"
2639
attr {
2640
key: "dilations"
2641
value {
2642
list {
2643
i: 1
2644
i: 1
2645
i: 1
2646
i: 1
2647
}
2648
}
2649
}
2650
attr {
2651
key: "padding"
2652
value {
2653
s: "SAME"
2654
}
2655
}
2656
attr {
2657
key: "strides"
2658
value {
2659
list {
2660
i: 1
2661
i: 1
2662
i: 1
2663
i: 1
2664
}
2665
}
2666
}
2667
}
2668
node {
2669
name: "FeatureExtractor/MobilenetV2/expanded_conv_15/project/BatchNorm/batchnorm/add_1"
2670
op: "FusedBatchNorm"
2671
input: "FeatureExtractor/MobilenetV2/expanded_conv_15/project/Conv2D"
2672
input: "FeatureExtractor/MobilenetV2/expanded_conv_15/project/BatchNorm/gamma"
2673
input: "FeatureExtractor/MobilenetV2/expanded_conv_15/project/BatchNorm/beta"
2674
input: "FeatureExtractor/MobilenetV2/expanded_conv_15/project/BatchNorm/moving_mean"
2675
input: "FeatureExtractor/MobilenetV2/expanded_conv_15/project/BatchNorm/moving_variance"
2676
attr {
2677
key: "epsilon"
2678
value {
2679
f: 0.0010000000475
2680
}
2681
}
2682
}
2683
node {
2684
name: "FeatureExtractor/MobilenetV2/expanded_conv_15/add"
2685
op: "Add"
2686
input: "FeatureExtractor/MobilenetV2/expanded_conv_15/project/BatchNorm/batchnorm/add_1"
2687
input: "FeatureExtractor/MobilenetV2/expanded_conv_15/input"
2688
}
2689
node {
2690
name: "FeatureExtractor/MobilenetV2/expanded_conv_16/input"
2691
op: "Identity"
2692
input: "FeatureExtractor/MobilenetV2/expanded_conv_15/add"
2693
}
2694
node {
2695
name: "FeatureExtractor/MobilenetV2/expanded_conv_16/expand/Conv2D"
2696
op: "Conv2D"
2697
input: "FeatureExtractor/MobilenetV2/expanded_conv_16/input"
2698
input: "FeatureExtractor/MobilenetV2/expanded_conv_16/expand/weights"
2699
attr {
2700
key: "dilations"
2701
value {
2702
list {
2703
i: 1
2704
i: 1
2705
i: 1
2706
i: 1
2707
}
2708
}
2709
}
2710
attr {
2711
key: "padding"
2712
value {
2713
s: "SAME"
2714
}
2715
}
2716
attr {
2717
key: "strides"
2718
value {
2719
list {
2720
i: 1
2721
i: 1
2722
i: 1
2723
i: 1
2724
}
2725
}
2726
}
2727
}
2728
node {
2729
name: "FeatureExtractor/MobilenetV2/expanded_conv_16/expand/BatchNorm/batchnorm/add_1"
2730
op: "FusedBatchNorm"
2731
input: "FeatureExtractor/MobilenetV2/expanded_conv_16/expand/Conv2D"
2732
input: "FeatureExtractor/MobilenetV2/expanded_conv_16/expand/BatchNorm/gamma"
2733
input: "FeatureExtractor/MobilenetV2/expanded_conv_16/expand/BatchNorm/beta"
2734
input: "FeatureExtractor/MobilenetV2/expanded_conv_16/expand/BatchNorm/moving_mean"
2735
input: "FeatureExtractor/MobilenetV2/expanded_conv_16/expand/BatchNorm/moving_variance"
2736
attr {
2737
key: "epsilon"
2738
value {
2739
f: 0.0010000000475
2740
}
2741
}
2742
}
2743
node {
2744
name: "FeatureExtractor/MobilenetV2/expanded_conv_16/expand/Relu6"
2745
op: "Relu6"
2746
input: "FeatureExtractor/MobilenetV2/expanded_conv_16/expand/BatchNorm/batchnorm/add_1"
2747
}
2748
node {
2749
name: "FeatureExtractor/MobilenetV2/expanded_conv_16/depthwise/depthwise"
2750
op: "DepthwiseConv2dNative"
2751
input: "FeatureExtractor/MobilenetV2/expanded_conv_16/expand/Relu6"
2752
input: "FeatureExtractor/MobilenetV2/expanded_conv_16/depthwise/depthwise_weights"
2753
attr {
2754
key: "dilations"
2755
value {
2756
list {
2757
i: 1
2758
i: 1
2759
i: 1
2760
i: 1
2761
}
2762
}
2763
}
2764
attr {
2765
key: "padding"
2766
value {
2767
s: "SAME"
2768
}
2769
}
2770
attr {
2771
key: "strides"
2772
value {
2773
list {
2774
i: 1
2775
i: 1
2776
i: 1
2777
i: 1
2778
}
2779
}
2780
}
2781
}
2782
node {
2783
name: "FeatureExtractor/MobilenetV2/expanded_conv_16/depthwise/BatchNorm/batchnorm/add_1"
2784
op: "FusedBatchNorm"
2785
input: "FeatureExtractor/MobilenetV2/expanded_conv_16/depthwise/depthwise"
2786
input: "FeatureExtractor/MobilenetV2/expanded_conv_16/depthwise/BatchNorm/gamma"
2787
input: "FeatureExtractor/MobilenetV2/expanded_conv_16/depthwise/BatchNorm/beta"
2788
input: "FeatureExtractor/MobilenetV2/expanded_conv_16/depthwise/BatchNorm/moving_mean"
2789
input: "FeatureExtractor/MobilenetV2/expanded_conv_16/depthwise/BatchNorm/moving_variance"
2790
attr {
2791
key: "epsilon"
2792
value {
2793
f: 0.0010000000475
2794
}
2795
}
2796
}
2797
node {
2798
name: "FeatureExtractor/MobilenetV2/expanded_conv_16/depthwise/Relu6"
2799
op: "Relu6"
2800
input: "FeatureExtractor/MobilenetV2/expanded_conv_16/depthwise/BatchNorm/batchnorm/add_1"
2801
}
2802
node {
2803
name: "FeatureExtractor/MobilenetV2/expanded_conv_16/project/Conv2D"
2804
op: "Conv2D"
2805
input: "FeatureExtractor/MobilenetV2/expanded_conv_16/depthwise/Relu6"
2806
input: "FeatureExtractor/MobilenetV2/expanded_conv_16/project/weights"
2807
attr {
2808
key: "dilations"
2809
value {
2810
list {
2811
i: 1
2812
i: 1
2813
i: 1
2814
i: 1
2815
}
2816
}
2817
}
2818
attr {
2819
key: "padding"
2820
value {
2821
s: "SAME"
2822
}
2823
}
2824
attr {
2825
key: "strides"
2826
value {
2827
list {
2828
i: 1
2829
i: 1
2830
i: 1
2831
i: 1
2832
}
2833
}
2834
}
2835
}
2836
node {
2837
name: "FeatureExtractor/MobilenetV2/expanded_conv_16/project/BatchNorm/batchnorm/add_1"
2838
op: "FusedBatchNorm"
2839
input: "FeatureExtractor/MobilenetV2/expanded_conv_16/project/Conv2D"
2840
input: "FeatureExtractor/MobilenetV2/expanded_conv_16/project/BatchNorm/gamma"
2841
input: "FeatureExtractor/MobilenetV2/expanded_conv_16/project/BatchNorm/beta"
2842
input: "FeatureExtractor/MobilenetV2/expanded_conv_16/project/BatchNorm/moving_mean"
2843
input: "FeatureExtractor/MobilenetV2/expanded_conv_16/project/BatchNorm/moving_variance"
2844
attr {
2845
key: "epsilon"
2846
value {
2847
f: 0.0010000000475
2848
}
2849
}
2850
}
2851
node {
2852
name: "FeatureExtractor/MobilenetV2/expanded_conv_16/output"
2853
op: "Identity"
2854
input: "FeatureExtractor/MobilenetV2/expanded_conv_16/project/BatchNorm/batchnorm/add_1"
2855
}
2856
node {
2857
name: "FeatureExtractor/MobilenetV2/Conv_1/Conv2D"
2858
op: "Conv2D"
2859
input: "FeatureExtractor/MobilenetV2/expanded_conv_16/output"
2860
input: "FeatureExtractor/MobilenetV2/Conv_1/weights"
2861
attr {
2862
key: "dilations"
2863
value {
2864
list {
2865
i: 1
2866
i: 1
2867
i: 1
2868
i: 1
2869
}
2870
}
2871
}
2872
attr {
2873
key: "padding"
2874
value {
2875
s: "SAME"
2876
}
2877
}
2878
attr {
2879
key: "strides"
2880
value {
2881
list {
2882
i: 1
2883
i: 1
2884
i: 1
2885
i: 1
2886
}
2887
}
2888
}
2889
}
2890
node {
2891
name: "FeatureExtractor/MobilenetV2/Conv_1/BatchNorm/batchnorm/add_1"
2892
op: "FusedBatchNorm"
2893
input: "FeatureExtractor/MobilenetV2/Conv_1/Conv2D"
2894
input: "FeatureExtractor/MobilenetV2/Conv_1/BatchNorm/gamma"
2895
input: "FeatureExtractor/MobilenetV2/Conv_1/BatchNorm/beta"
2896
input: "FeatureExtractor/MobilenetV2/Conv_1/BatchNorm/moving_mean"
2897
input: "FeatureExtractor/MobilenetV2/Conv_1/BatchNorm/moving_variance"
2898
attr {
2899
key: "epsilon"
2900
value {
2901
f: 0.0010000000475
2902
}
2903
}
2904
}
2905
node {
2906
name: "FeatureExtractor/MobilenetV2/Conv_1/Relu6"
2907
op: "Relu6"
2908
input: "FeatureExtractor/MobilenetV2/Conv_1/BatchNorm/batchnorm/add_1"
2909
}
2910
node {
2911
name: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_2_1x1_256/Conv2D"
2912
op: "Conv2D"
2913
input: "FeatureExtractor/MobilenetV2/Conv_1/Relu6"
2914
input: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_2_1x1_256/weights"
2915
attr {
2916
key: "dilations"
2917
value {
2918
list {
2919
i: 1
2920
i: 1
2921
i: 1
2922
i: 1
2923
}
2924
}
2925
}
2926
attr {
2927
key: "padding"
2928
value {
2929
s: "SAME"
2930
}
2931
}
2932
attr {
2933
key: "strides"
2934
value {
2935
list {
2936
i: 1
2937
i: 1
2938
i: 1
2939
i: 1
2940
}
2941
}
2942
}
2943
}
2944
node {
2945
name: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_2_1x1_256/BatchNorm/batchnorm/add_1"
2946
op: "FusedBatchNorm"
2947
input: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_2_1x1_256/Conv2D"
2948
input: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_2_1x1_256/BatchNorm/gamma"
2949
input: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_2_1x1_256/BatchNorm/beta"
2950
input: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_2_1x1_256/BatchNorm/moving_mean"
2951
input: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_2_1x1_256/BatchNorm/moving_variance"
2952
attr {
2953
key: "epsilon"
2954
value {
2955
f: 0.0010000000475
2956
}
2957
}
2958
}
2959
node {
2960
name: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_2_1x1_256/Relu6"
2961
op: "Relu6"
2962
input: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_2_1x1_256/BatchNorm/batchnorm/add_1"
2963
}
2964
node {
2965
name: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_2_3x3_s2_512_depthwise/depthwise"
2966
op: "DepthwiseConv2dNative"
2967
input: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_2_1x1_256/Relu6"
2968
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_2_3x3_s2_512_depthwise/depthwise_weights"
2969
attr {
2970
key: "dilations"
2971
value {
2972
list {
2973
i: 1
2974
i: 1
2975
i: 1
2976
i: 1
2977
}
2978
}
2979
}
2980
attr {
2981
key: "padding"
2982
value {
2983
s: "SAME"
2984
}
2985
}
2986
attr {
2987
key: "strides"
2988
value {
2989
list {
2990
i: 1
2991
i: 2
2992
i: 2
2993
i: 1
2994
}
2995
}
2996
}
2997
}
2998
node {
2999
name: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_2_3x3_s2_512_depthwise/BatchNorm/batchnorm/add_1"
3000
op: "FusedBatchNorm"
3001
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_2_3x3_s2_512_depthwise/depthwise"
3002
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_2_3x3_s2_512_depthwise/BatchNorm/gamma"
3003
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_2_3x3_s2_512_depthwise/BatchNorm/beta"
3004
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_2_3x3_s2_512_depthwise/BatchNorm/moving_mean"
3005
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_2_3x3_s2_512_depthwise/BatchNorm/moving_variance"
3006
attr {
3007
key: "epsilon"
3008
value {
3009
f: 0.0010000000475
3010
}
3011
}
3012
}
3013
node {
3014
name: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_2_3x3_s2_512_depthwise/Relu6"
3015
op: "Relu6"
3016
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_2_3x3_s2_512_depthwise/BatchNorm/batchnorm/add_1"
3017
}
3018
node {
3019
name: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_2_3x3_s2_512/Conv2D"
3020
op: "Conv2D"
3021
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_2_3x3_s2_512_depthwise/Relu6"
3022
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_2_3x3_s2_512/weights"
3023
attr {
3024
key: "dilations"
3025
value {
3026
list {
3027
i: 1
3028
i: 1
3029
i: 1
3030
i: 1
3031
}
3032
}
3033
}
3034
attr {
3035
key: "padding"
3036
value {
3037
s: "SAME"
3038
}
3039
}
3040
attr {
3041
key: "strides"
3042
value {
3043
list {
3044
i: 1
3045
i: 1
3046
i: 1
3047
i: 1
3048
}
3049
}
3050
}
3051
}
3052
node {
3053
name: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_2_3x3_s2_512/BatchNorm/batchnorm/add_1"
3054
op: "FusedBatchNorm"
3055
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_2_3x3_s2_512/Conv2D"
3056
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_2_3x3_s2_512/BatchNorm/gamma"
3057
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_2_3x3_s2_512/BatchNorm/beta"
3058
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_2_3x3_s2_512/BatchNorm/moving_mean"
3059
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_2_3x3_s2_512/BatchNorm/moving_variance"
3060
attr {
3061
key: "epsilon"
3062
value {
3063
f: 0.0010000000475
3064
}
3065
}
3066
}
3067
node {
3068
name: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_2_3x3_s2_512/Relu6"
3069
op: "Relu6"
3070
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_2_3x3_s2_512/BatchNorm/batchnorm/add_1"
3071
}
3072
node {
3073
name: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_3_1x1_128/Conv2D"
3074
op: "Conv2D"
3075
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_2_3x3_s2_512/Relu6"
3076
input: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_3_1x1_128/weights"
3077
attr {
3078
key: "dilations"
3079
value {
3080
list {
3081
i: 1
3082
i: 1
3083
i: 1
3084
i: 1
3085
}
3086
}
3087
}
3088
attr {
3089
key: "padding"
3090
value {
3091
s: "SAME"
3092
}
3093
}
3094
attr {
3095
key: "strides"
3096
value {
3097
list {
3098
i: 1
3099
i: 1
3100
i: 1
3101
i: 1
3102
}
3103
}
3104
}
3105
}
3106
node {
3107
name: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_3_1x1_128/BatchNorm/batchnorm/add_1"
3108
op: "FusedBatchNorm"
3109
input: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_3_1x1_128/Conv2D"
3110
input: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_3_1x1_128/BatchNorm/gamma"
3111
input: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_3_1x1_128/BatchNorm/beta"
3112
input: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_3_1x1_128/BatchNorm/moving_mean"
3113
input: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_3_1x1_128/BatchNorm/moving_variance"
3114
attr {
3115
key: "epsilon"
3116
value {
3117
f: 0.0010000000475
3118
}
3119
}
3120
}
3121
node {
3122
name: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_3_1x1_128/Relu6"
3123
op: "Relu6"
3124
input: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_3_1x1_128/BatchNorm/batchnorm/add_1"
3125
}
3126
node {
3127
name: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_3_3x3_s2_256_depthwise/depthwise"
3128
op: "DepthwiseConv2dNative"
3129
input: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_3_1x1_128/Relu6"
3130
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_3_3x3_s2_256_depthwise/depthwise_weights"
3131
attr {
3132
key: "dilations"
3133
value {
3134
list {
3135
i: 1
3136
i: 1
3137
i: 1
3138
i: 1
3139
}
3140
}
3141
}
3142
attr {
3143
key: "padding"
3144
value {
3145
s: "SAME"
3146
}
3147
}
3148
attr {
3149
key: "strides"
3150
value {
3151
list {
3152
i: 1
3153
i: 2
3154
i: 2
3155
i: 1
3156
}
3157
}
3158
}
3159
}
3160
node {
3161
name: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_3_3x3_s2_256_depthwise/BatchNorm/batchnorm/add_1"
3162
op: "FusedBatchNorm"
3163
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_3_3x3_s2_256_depthwise/depthwise"
3164
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_3_3x3_s2_256_depthwise/BatchNorm/gamma"
3165
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_3_3x3_s2_256_depthwise/BatchNorm/beta"
3166
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_3_3x3_s2_256_depthwise/BatchNorm/moving_mean"
3167
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_3_3x3_s2_256_depthwise/BatchNorm/moving_variance"
3168
attr {
3169
key: "epsilon"
3170
value {
3171
f: 0.0010000000475
3172
}
3173
}
3174
}
3175
node {
3176
name: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_3_3x3_s2_256_depthwise/Relu6"
3177
op: "Relu6"
3178
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_3_3x3_s2_256_depthwise/BatchNorm/batchnorm/add_1"
3179
}
3180
node {
3181
name: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_3_3x3_s2_256/Conv2D"
3182
op: "Conv2D"
3183
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_3_3x3_s2_256_depthwise/Relu6"
3184
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_3_3x3_s2_256/weights"
3185
attr {
3186
key: "dilations"
3187
value {
3188
list {
3189
i: 1
3190
i: 1
3191
i: 1
3192
i: 1
3193
}
3194
}
3195
}
3196
attr {
3197
key: "padding"
3198
value {
3199
s: "SAME"
3200
}
3201
}
3202
attr {
3203
key: "strides"
3204
value {
3205
list {
3206
i: 1
3207
i: 1
3208
i: 1
3209
i: 1
3210
}
3211
}
3212
}
3213
}
3214
node {
3215
name: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_3_3x3_s2_256/BatchNorm/batchnorm/add_1"
3216
op: "FusedBatchNorm"
3217
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_3_3x3_s2_256/Conv2D"
3218
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_3_3x3_s2_256/BatchNorm/gamma"
3219
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_3_3x3_s2_256/BatchNorm/beta"
3220
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_3_3x3_s2_256/BatchNorm/moving_mean"
3221
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_3_3x3_s2_256/BatchNorm/moving_variance"
3222
attr {
3223
key: "epsilon"
3224
value {
3225
f: 0.0010000000475
3226
}
3227
}
3228
}
3229
node {
3230
name: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_3_3x3_s2_256/Relu6"
3231
op: "Relu6"
3232
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_3_3x3_s2_256/BatchNorm/batchnorm/add_1"
3233
}
3234
node {
3235
name: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_4_1x1_128/Conv2D"
3236
op: "Conv2D"
3237
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_3_3x3_s2_256/Relu6"
3238
input: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_4_1x1_128/weights"
3239
attr {
3240
key: "dilations"
3241
value {
3242
list {
3243
i: 1
3244
i: 1
3245
i: 1
3246
i: 1
3247
}
3248
}
3249
}
3250
attr {
3251
key: "padding"
3252
value {
3253
s: "SAME"
3254
}
3255
}
3256
attr {
3257
key: "strides"
3258
value {
3259
list {
3260
i: 1
3261
i: 1
3262
i: 1
3263
i: 1
3264
}
3265
}
3266
}
3267
}
3268
node {
3269
name: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_4_1x1_128/BatchNorm/batchnorm/add_1"
3270
op: "FusedBatchNorm"
3271
input: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_4_1x1_128/Conv2D"
3272
input: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_4_1x1_128/BatchNorm/gamma"
3273
input: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_4_1x1_128/BatchNorm/beta"
3274
input: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_4_1x1_128/BatchNorm/moving_mean"
3275
input: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_4_1x1_128/BatchNorm/moving_variance"
3276
attr {
3277
key: "epsilon"
3278
value {
3279
f: 0.0010000000475
3280
}
3281
}
3282
}
3283
node {
3284
name: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_4_1x1_128/Relu6"
3285
op: "Relu6"
3286
input: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_4_1x1_128/BatchNorm/batchnorm/add_1"
3287
}
3288
node {
3289
name: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_4_3x3_s2_256_depthwise/depthwise"
3290
op: "DepthwiseConv2dNative"
3291
input: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_4_1x1_128/Relu6"
3292
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_4_3x3_s2_256_depthwise/depthwise_weights"
3293
attr {
3294
key: "dilations"
3295
value {
3296
list {
3297
i: 1
3298
i: 1
3299
i: 1
3300
i: 1
3301
}
3302
}
3303
}
3304
attr {
3305
key: "padding"
3306
value {
3307
s: "SAME"
3308
}
3309
}
3310
attr {
3311
key: "strides"
3312
value {
3313
list {
3314
i: 1
3315
i: 2
3316
i: 2
3317
i: 1
3318
}
3319
}
3320
}
3321
}
3322
node {
3323
name: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_4_3x3_s2_256_depthwise/BatchNorm/batchnorm/add_1"
3324
op: "FusedBatchNorm"
3325
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_4_3x3_s2_256_depthwise/depthwise"
3326
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_4_3x3_s2_256_depthwise/BatchNorm/gamma"
3327
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_4_3x3_s2_256_depthwise/BatchNorm/beta"
3328
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_4_3x3_s2_256_depthwise/BatchNorm/moving_mean"
3329
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_4_3x3_s2_256_depthwise/BatchNorm/moving_variance"
3330
attr {
3331
key: "epsilon"
3332
value {
3333
f: 0.0010000000475
3334
}
3335
}
3336
}
3337
node {
3338
name: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_4_3x3_s2_256_depthwise/Relu6"
3339
op: "Relu6"
3340
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_4_3x3_s2_256_depthwise/BatchNorm/batchnorm/add_1"
3341
}
3342
node {
3343
name: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_4_3x3_s2_256/Conv2D"
3344
op: "Conv2D"
3345
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_4_3x3_s2_256_depthwise/Relu6"
3346
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_4_3x3_s2_256/weights"
3347
attr {
3348
key: "dilations"
3349
value {
3350
list {
3351
i: 1
3352
i: 1
3353
i: 1
3354
i: 1
3355
}
3356
}
3357
}
3358
attr {
3359
key: "padding"
3360
value {
3361
s: "SAME"
3362
}
3363
}
3364
attr {
3365
key: "strides"
3366
value {
3367
list {
3368
i: 1
3369
i: 1
3370
i: 1
3371
i: 1
3372
}
3373
}
3374
}
3375
}
3376
node {
3377
name: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_4_3x3_s2_256/BatchNorm/batchnorm/add_1"
3378
op: "FusedBatchNorm"
3379
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_4_3x3_s2_256/Conv2D"
3380
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_4_3x3_s2_256/BatchNorm/gamma"
3381
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_4_3x3_s2_256/BatchNorm/beta"
3382
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_4_3x3_s2_256/BatchNorm/moving_mean"
3383
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_4_3x3_s2_256/BatchNorm/moving_variance"
3384
attr {
3385
key: "epsilon"
3386
value {
3387
f: 0.0010000000475
3388
}
3389
}
3390
}
3391
node {
3392
name: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_4_3x3_s2_256/Relu6"
3393
op: "Relu6"
3394
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_4_3x3_s2_256/BatchNorm/batchnorm/add_1"
3395
}
3396
node {
3397
name: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_5_1x1_64/Conv2D"
3398
op: "Conv2D"
3399
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_4_3x3_s2_256/Relu6"
3400
input: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_5_1x1_64/weights"
3401
attr {
3402
key: "dilations"
3403
value {
3404
list {
3405
i: 1
3406
i: 1
3407
i: 1
3408
i: 1
3409
}
3410
}
3411
}
3412
attr {
3413
key: "padding"
3414
value {
3415
s: "SAME"
3416
}
3417
}
3418
attr {
3419
key: "strides"
3420
value {
3421
list {
3422
i: 1
3423
i: 1
3424
i: 1
3425
i: 1
3426
}
3427
}
3428
}
3429
}
3430
node {
3431
name: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_5_1x1_64/BatchNorm/batchnorm/add_1"
3432
op: "FusedBatchNorm"
3433
input: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_5_1x1_64/Conv2D"
3434
input: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_5_1x1_64/BatchNorm/gamma"
3435
input: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_5_1x1_64/BatchNorm/beta"
3436
input: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_5_1x1_64/BatchNorm/moving_mean"
3437
input: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_5_1x1_64/BatchNorm/moving_variance"
3438
attr {
3439
key: "epsilon"
3440
value {
3441
f: 0.0010000000475
3442
}
3443
}
3444
}
3445
node {
3446
name: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_5_1x1_64/Relu6"
3447
op: "Relu6"
3448
input: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_5_1x1_64/BatchNorm/batchnorm/add_1"
3449
}
3450
node {
3451
name: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_5_3x3_s2_128_depthwise/depthwise"
3452
op: "DepthwiseConv2dNative"
3453
input: "FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_5_1x1_64/Relu6"
3454
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_5_3x3_s2_128_depthwise/depthwise_weights"
3455
attr {
3456
key: "dilations"
3457
value {
3458
list {
3459
i: 1
3460
i: 1
3461
i: 1
3462
i: 1
3463
}
3464
}
3465
}
3466
attr {
3467
key: "padding"
3468
value {
3469
s: "SAME"
3470
}
3471
}
3472
attr {
3473
key: "strides"
3474
value {
3475
list {
3476
i: 1
3477
i: 2
3478
i: 2
3479
i: 1
3480
}
3481
}
3482
}
3483
}
3484
node {
3485
name: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_5_3x3_s2_128_depthwise/BatchNorm/batchnorm/add_1"
3486
op: "FusedBatchNorm"
3487
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_5_3x3_s2_128_depthwise/depthwise"
3488
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_5_3x3_s2_128_depthwise/BatchNorm/gamma"
3489
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_5_3x3_s2_128_depthwise/BatchNorm/beta"
3490
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_5_3x3_s2_128_depthwise/BatchNorm/moving_mean"
3491
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_5_3x3_s2_128_depthwise/BatchNorm/moving_variance"
3492
attr {
3493
key: "epsilon"
3494
value {
3495
f: 0.0010000000475
3496
}
3497
}
3498
}
3499
node {
3500
name: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_5_3x3_s2_128_depthwise/Relu6"
3501
op: "Relu6"
3502
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_5_3x3_s2_128_depthwise/BatchNorm/batchnorm/add_1"
3503
}
3504
node {
3505
name: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_5_3x3_s2_128/Conv2D"
3506
op: "Conv2D"
3507
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_5_3x3_s2_128_depthwise/Relu6"
3508
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_5_3x3_s2_128/weights"
3509
attr {
3510
key: "dilations"
3511
value {
3512
list {
3513
i: 1
3514
i: 1
3515
i: 1
3516
i: 1
3517
}
3518
}
3519
}
3520
attr {
3521
key: "padding"
3522
value {
3523
s: "SAME"
3524
}
3525
}
3526
attr {
3527
key: "strides"
3528
value {
3529
list {
3530
i: 1
3531
i: 1
3532
i: 1
3533
i: 1
3534
}
3535
}
3536
}
3537
}
3538
node {
3539
name: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_5_3x3_s2_128/BatchNorm/batchnorm/add_1"
3540
op: "FusedBatchNorm"
3541
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_5_3x3_s2_128/Conv2D"
3542
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_5_3x3_s2_128/BatchNorm/gamma"
3543
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_5_3x3_s2_128/BatchNorm/beta"
3544
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_5_3x3_s2_128/BatchNorm/moving_mean"
3545
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_5_3x3_s2_128/BatchNorm/moving_variance"
3546
attr {
3547
key: "epsilon"
3548
value {
3549
f: 0.0010000000475
3550
}
3551
}
3552
}
3553
node {
3554
name: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_5_3x3_s2_128/Relu6"
3555
op: "Relu6"
3556
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_5_3x3_s2_128/BatchNorm/batchnorm/add_1"
3557
}
3558
node {
3559
name: "BoxPredictor_0/BoxEncodingPredictor/Conv2D"
3560
op: "Conv2D"
3561
input: "FeatureExtractor/MobilenetV2/expanded_conv_13/expand/Relu6"
3562
input: "BoxPredictor_0/BoxEncodingPredictor/weights"
3563
attr {
3564
key: "dilations"
3565
value {
3566
list {
3567
i: 1
3568
i: 1
3569
i: 1
3570
i: 1
3571
}
3572
}
3573
}
3574
attr {
3575
key: "loc_pred_transposed"
3576
value {
3577
b: true
3578
}
3579
}
3580
attr {
3581
key: "padding"
3582
value {
3583
s: "SAME"
3584
}
3585
}
3586
attr {
3587
key: "strides"
3588
value {
3589
list {
3590
i: 1
3591
i: 1
3592
i: 1
3593
i: 1
3594
}
3595
}
3596
}
3597
}
3598
node {
3599
name: "BoxPredictor_0/BoxEncodingPredictor/BiasAdd"
3600
op: "BiasAdd"
3601
input: "BoxPredictor_0/BoxEncodingPredictor/Conv2D"
3602
input: "BoxPredictor_0/BoxEncodingPredictor/biases"
3603
}
3604
node {
3605
name: "BoxPredictor_0/ClassPredictor/Conv2D"
3606
op: "Conv2D"
3607
input: "FeatureExtractor/MobilenetV2/expanded_conv_13/expand/Relu6"
3608
input: "BoxPredictor_0/ClassPredictor/weights"
3609
attr {
3610
key: "dilations"
3611
value {
3612
list {
3613
i: 1
3614
i: 1
3615
i: 1
3616
i: 1
3617
}
3618
}
3619
}
3620
attr {
3621
key: "padding"
3622
value {
3623
s: "SAME"
3624
}
3625
}
3626
attr {
3627
key: "strides"
3628
value {
3629
list {
3630
i: 1
3631
i: 1
3632
i: 1
3633
i: 1
3634
}
3635
}
3636
}
3637
}
3638
node {
3639
name: "BoxPredictor_0/ClassPredictor/BiasAdd"
3640
op: "BiasAdd"
3641
input: "BoxPredictor_0/ClassPredictor/Conv2D"
3642
input: "BoxPredictor_0/ClassPredictor/biases"
3643
}
3644
node {
3645
name: "BoxPredictor_1/BoxEncodingPredictor/Conv2D"
3646
op: "Conv2D"
3647
input: "FeatureExtractor/MobilenetV2/Conv_1/Relu6"
3648
input: "BoxPredictor_1/BoxEncodingPredictor/weights"
3649
attr {
3650
key: "dilations"
3651
value {
3652
list {
3653
i: 1
3654
i: 1
3655
i: 1
3656
i: 1
3657
}
3658
}
3659
}
3660
attr {
3661
key: "loc_pred_transposed"
3662
value {
3663
b: true
3664
}
3665
}
3666
attr {
3667
key: "padding"
3668
value {
3669
s: "SAME"
3670
}
3671
}
3672
attr {
3673
key: "strides"
3674
value {
3675
list {
3676
i: 1
3677
i: 1
3678
i: 1
3679
i: 1
3680
}
3681
}
3682
}
3683
}
3684
node {
3685
name: "BoxPredictor_1/BoxEncodingPredictor/BiasAdd"
3686
op: "BiasAdd"
3687
input: "BoxPredictor_1/BoxEncodingPredictor/Conv2D"
3688
input: "BoxPredictor_1/BoxEncodingPredictor/biases"
3689
}
3690
node {
3691
name: "BoxPredictor_1/ClassPredictor/Conv2D"
3692
op: "Conv2D"
3693
input: "FeatureExtractor/MobilenetV2/Conv_1/Relu6"
3694
input: "BoxPredictor_1/ClassPredictor/weights"
3695
attr {
3696
key: "dilations"
3697
value {
3698
list {
3699
i: 1
3700
i: 1
3701
i: 1
3702
i: 1
3703
}
3704
}
3705
}
3706
attr {
3707
key: "padding"
3708
value {
3709
s: "SAME"
3710
}
3711
}
3712
attr {
3713
key: "strides"
3714
value {
3715
list {
3716
i: 1
3717
i: 1
3718
i: 1
3719
i: 1
3720
}
3721
}
3722
}
3723
}
3724
node {
3725
name: "BoxPredictor_1/ClassPredictor/BiasAdd"
3726
op: "BiasAdd"
3727
input: "BoxPredictor_1/ClassPredictor/Conv2D"
3728
input: "BoxPredictor_1/ClassPredictor/biases"
3729
}
3730
node {
3731
name: "BoxPredictor_2/BoxEncodingPredictor/Conv2D"
3732
op: "Conv2D"
3733
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_2_3x3_s2_512/Relu6"
3734
input: "BoxPredictor_2/BoxEncodingPredictor/weights"
3735
attr {
3736
key: "dilations"
3737
value {
3738
list {
3739
i: 1
3740
i: 1
3741
i: 1
3742
i: 1
3743
}
3744
}
3745
}
3746
attr {
3747
key: "loc_pred_transposed"
3748
value {
3749
b: true
3750
}
3751
}
3752
attr {
3753
key: "padding"
3754
value {
3755
s: "SAME"
3756
}
3757
}
3758
attr {
3759
key: "strides"
3760
value {
3761
list {
3762
i: 1
3763
i: 1
3764
i: 1
3765
i: 1
3766
}
3767
}
3768
}
3769
}
3770
node {
3771
name: "BoxPredictor_2/BoxEncodingPredictor/BiasAdd"
3772
op: "BiasAdd"
3773
input: "BoxPredictor_2/BoxEncodingPredictor/Conv2D"
3774
input: "BoxPredictor_2/BoxEncodingPredictor/biases"
3775
}
3776
node {
3777
name: "BoxPredictor_2/ClassPredictor/Conv2D"
3778
op: "Conv2D"
3779
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_2_3x3_s2_512/Relu6"
3780
input: "BoxPredictor_2/ClassPredictor/weights"
3781
attr {
3782
key: "dilations"
3783
value {
3784
list {
3785
i: 1
3786
i: 1
3787
i: 1
3788
i: 1
3789
}
3790
}
3791
}
3792
attr {
3793
key: "padding"
3794
value {
3795
s: "SAME"
3796
}
3797
}
3798
attr {
3799
key: "strides"
3800
value {
3801
list {
3802
i: 1
3803
i: 1
3804
i: 1
3805
i: 1
3806
}
3807
}
3808
}
3809
}
3810
node {
3811
name: "BoxPredictor_2/ClassPredictor/BiasAdd"
3812
op: "BiasAdd"
3813
input: "BoxPredictor_2/ClassPredictor/Conv2D"
3814
input: "BoxPredictor_2/ClassPredictor/biases"
3815
}
3816
node {
3817
name: "BoxPredictor_3/BoxEncodingPredictor/Conv2D"
3818
op: "Conv2D"
3819
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_3_3x3_s2_256/Relu6"
3820
input: "BoxPredictor_3/BoxEncodingPredictor/weights"
3821
attr {
3822
key: "dilations"
3823
value {
3824
list {
3825
i: 1
3826
i: 1
3827
i: 1
3828
i: 1
3829
}
3830
}
3831
}
3832
attr {
3833
key: "loc_pred_transposed"
3834
value {
3835
b: true
3836
}
3837
}
3838
attr {
3839
key: "padding"
3840
value {
3841
s: "SAME"
3842
}
3843
}
3844
attr {
3845
key: "strides"
3846
value {
3847
list {
3848
i: 1
3849
i: 1
3850
i: 1
3851
i: 1
3852
}
3853
}
3854
}
3855
}
3856
node {
3857
name: "BoxPredictor_3/BoxEncodingPredictor/BiasAdd"
3858
op: "BiasAdd"
3859
input: "BoxPredictor_3/BoxEncodingPredictor/Conv2D"
3860
input: "BoxPredictor_3/BoxEncodingPredictor/biases"
3861
}
3862
node {
3863
name: "BoxPredictor_3/ClassPredictor/Conv2D"
3864
op: "Conv2D"
3865
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_3_3x3_s2_256/Relu6"
3866
input: "BoxPredictor_3/ClassPredictor/weights"
3867
attr {
3868
key: "dilations"
3869
value {
3870
list {
3871
i: 1
3872
i: 1
3873
i: 1
3874
i: 1
3875
}
3876
}
3877
}
3878
attr {
3879
key: "padding"
3880
value {
3881
s: "SAME"
3882
}
3883
}
3884
attr {
3885
key: "strides"
3886
value {
3887
list {
3888
i: 1
3889
i: 1
3890
i: 1
3891
i: 1
3892
}
3893
}
3894
}
3895
}
3896
node {
3897
name: "BoxPredictor_3/ClassPredictor/BiasAdd"
3898
op: "BiasAdd"
3899
input: "BoxPredictor_3/ClassPredictor/Conv2D"
3900
input: "BoxPredictor_3/ClassPredictor/biases"
3901
}
3902
node {
3903
name: "BoxPredictor_4/BoxEncodingPredictor/Conv2D"
3904
op: "Conv2D"
3905
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_4_3x3_s2_256/Relu6"
3906
input: "BoxPredictor_4/BoxEncodingPredictor/weights"
3907
attr {
3908
key: "dilations"
3909
value {
3910
list {
3911
i: 1
3912
i: 1
3913
i: 1
3914
i: 1
3915
}
3916
}
3917
}
3918
attr {
3919
key: "loc_pred_transposed"
3920
value {
3921
b: true
3922
}
3923
}
3924
attr {
3925
key: "padding"
3926
value {
3927
s: "SAME"
3928
}
3929
}
3930
attr {
3931
key: "strides"
3932
value {
3933
list {
3934
i: 1
3935
i: 1
3936
i: 1
3937
i: 1
3938
}
3939
}
3940
}
3941
}
3942
node {
3943
name: "BoxPredictor_4/BoxEncodingPredictor/BiasAdd"
3944
op: "BiasAdd"
3945
input: "BoxPredictor_4/BoxEncodingPredictor/Conv2D"
3946
input: "BoxPredictor_4/BoxEncodingPredictor/biases"
3947
}
3948
node {
3949
name: "BoxPredictor_4/ClassPredictor/Conv2D"
3950
op: "Conv2D"
3951
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_4_3x3_s2_256/Relu6"
3952
input: "BoxPredictor_4/ClassPredictor/weights"
3953
attr {
3954
key: "dilations"
3955
value {
3956
list {
3957
i: 1
3958
i: 1
3959
i: 1
3960
i: 1
3961
}
3962
}
3963
}
3964
attr {
3965
key: "padding"
3966
value {
3967
s: "SAME"
3968
}
3969
}
3970
attr {
3971
key: "strides"
3972
value {
3973
list {
3974
i: 1
3975
i: 1
3976
i: 1
3977
i: 1
3978
}
3979
}
3980
}
3981
}
3982
node {
3983
name: "BoxPredictor_4/ClassPredictor/BiasAdd"
3984
op: "BiasAdd"
3985
input: "BoxPredictor_4/ClassPredictor/Conv2D"
3986
input: "BoxPredictor_4/ClassPredictor/biases"
3987
}
3988
node {
3989
name: "BoxPredictor_5/BoxEncodingPredictor/Conv2D"
3990
op: "Conv2D"
3991
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_5_3x3_s2_128/Relu6"
3992
input: "BoxPredictor_5/BoxEncodingPredictor/weights"
3993
attr {
3994
key: "dilations"
3995
value {
3996
list {
3997
i: 1
3998
i: 1
3999
i: 1
4000
i: 1
4001
}
4002
}
4003
}
4004
attr {
4005
key: "loc_pred_transposed"
4006
value {
4007
b: true
4008
}
4009
}
4010
attr {
4011
key: "padding"
4012
value {
4013
s: "SAME"
4014
}
4015
}
4016
attr {
4017
key: "strides"
4018
value {
4019
list {
4020
i: 1
4021
i: 1
4022
i: 1
4023
i: 1
4024
}
4025
}
4026
}
4027
}
4028
node {
4029
name: "BoxPredictor_5/BoxEncodingPredictor/BiasAdd"
4030
op: "BiasAdd"
4031
input: "BoxPredictor_5/BoxEncodingPredictor/Conv2D"
4032
input: "BoxPredictor_5/BoxEncodingPredictor/biases"
4033
}
4034
node {
4035
name: "BoxPredictor_5/ClassPredictor/Conv2D"
4036
op: "Conv2D"
4037
input: "FeatureExtractor/MobilenetV2/layer_19_2_Conv2d_5_3x3_s2_128/Relu6"
4038
input: "BoxPredictor_5/ClassPredictor/weights"
4039
attr {
4040
key: "dilations"
4041
value {
4042
list {
4043
i: 1
4044
i: 1
4045
i: 1
4046
i: 1
4047
}
4048
}
4049
}
4050
attr {
4051
key: "padding"
4052
value {
4053
s: "SAME"
4054
}
4055
}
4056
attr {
4057
key: "strides"
4058
value {
4059
list {
4060
i: 1
4061
i: 1
4062
i: 1
4063
i: 1
4064
}
4065
}
4066
}
4067
}
4068
node {
4069
name: "BoxPredictor_5/ClassPredictor/BiasAdd"
4070
op: "BiasAdd"
4071
input: "BoxPredictor_5/ClassPredictor/Conv2D"
4072
input: "BoxPredictor_5/ClassPredictor/biases"
4073
}
4074
node {
4075
name: "concat/axis_flatten"
4076
op: "Const"
4077
attr {
4078
key: "value"
4079
value {
4080
tensor {
4081
dtype: DT_INT32
4082
tensor_shape {
4083
dim {
4084
size: 1
4085
}
4086
}
4087
int_val: -1
4088
}
4089
}
4090
}
4091
}
4092
node {
4093
name: "BoxPredictor_0/ClassPredictor/BiasAdd/Flatten"
4094
op: "Flatten"
4095
input: "BoxPredictor_0/ClassPredictor/BiasAdd"
4096
}
4097
node {
4098
name: "BoxPredictor_1/ClassPredictor/BiasAdd/Flatten"
4099
op: "Flatten"
4100
input: "BoxPredictor_1/ClassPredictor/BiasAdd"
4101
}
4102
node {
4103
name: "BoxPredictor_2/ClassPredictor/BiasAdd/Flatten"
4104
op: "Flatten"
4105
input: "BoxPredictor_2/ClassPredictor/BiasAdd"
4106
}
4107
node {
4108
name: "BoxPredictor_3/ClassPredictor/BiasAdd/Flatten"
4109
op: "Flatten"
4110
input: "BoxPredictor_3/ClassPredictor/BiasAdd"
4111
}
4112
node {
4113
name: "BoxPredictor_4/ClassPredictor/BiasAdd/Flatten"
4114
op: "Flatten"
4115
input: "BoxPredictor_4/ClassPredictor/BiasAdd"
4116
}
4117
node {
4118
name: "BoxPredictor_5/ClassPredictor/BiasAdd/Flatten"
4119
op: "Flatten"
4120
input: "BoxPredictor_5/ClassPredictor/BiasAdd"
4121
}
4122
node {
4123
name: "ClassPredictor/concat"
4124
op: "ConcatV2"
4125
input: "BoxPredictor_0/ClassPredictor/BiasAdd/Flatten"
4126
input: "BoxPredictor_1/ClassPredictor/BiasAdd/Flatten"
4127
input: "BoxPredictor_2/ClassPredictor/BiasAdd/Flatten"
4128
input: "BoxPredictor_3/ClassPredictor/BiasAdd/Flatten"
4129
input: "BoxPredictor_4/ClassPredictor/BiasAdd/Flatten"
4130
input: "BoxPredictor_5/ClassPredictor/BiasAdd/Flatten"
4131
input: "concat/axis_flatten"
4132
}
4133
node {
4134
name: "BoxPredictor_0/BoxEncodingPredictor/BiasAdd/Flatten"
4135
op: "Flatten"
4136
input: "BoxPredictor_0/BoxEncodingPredictor/BiasAdd"
4137
}
4138
node {
4139
name: "BoxPredictor_1/BoxEncodingPredictor/BiasAdd/Flatten"
4140
op: "Flatten"
4141
input: "BoxPredictor_1/BoxEncodingPredictor/BiasAdd"
4142
}
4143
node {
4144
name: "BoxPredictor_2/BoxEncodingPredictor/BiasAdd/Flatten"
4145
op: "Flatten"
4146
input: "BoxPredictor_2/BoxEncodingPredictor/BiasAdd"
4147
}
4148
node {
4149
name: "BoxPredictor_3/BoxEncodingPredictor/BiasAdd/Flatten"
4150
op: "Flatten"
4151
input: "BoxPredictor_3/BoxEncodingPredictor/BiasAdd"
4152
}
4153
node {
4154
name: "BoxPredictor_4/BoxEncodingPredictor/BiasAdd/Flatten"
4155
op: "Flatten"
4156
input: "BoxPredictor_4/BoxEncodingPredictor/BiasAdd"
4157
}
4158
node {
4159
name: "BoxPredictor_5/BoxEncodingPredictor/BiasAdd/Flatten"
4160
op: "Flatten"
4161
input: "BoxPredictor_5/BoxEncodingPredictor/BiasAdd"
4162
}
4163
node {
4164
name: "BoxEncodingPredictor/concat"
4165
op: "ConcatV2"
4166
input: "BoxPredictor_0/BoxEncodingPredictor/BiasAdd/Flatten"
4167
input: "BoxPredictor_1/BoxEncodingPredictor/BiasAdd/Flatten"
4168
input: "BoxPredictor_2/BoxEncodingPredictor/BiasAdd/Flatten"
4169
input: "BoxPredictor_3/BoxEncodingPredictor/BiasAdd/Flatten"
4170
input: "BoxPredictor_4/BoxEncodingPredictor/BiasAdd/Flatten"
4171
input: "BoxPredictor_5/BoxEncodingPredictor/BiasAdd/Flatten"
4172
input: "concat/axis_flatten"
4173
}
4174
node {
4175
name: "PriorBox_0"
4176
op: "PriorBox"
4177
input: "BoxPredictor_0/BoxEncodingPredictor/BiasAdd"
4178
input: "image_tensor"
4179
attr {
4180
key: "clip"
4181
value {
4182
b: false
4183
}
4184
}
4185
attr {
4186
key: "flip"
4187
value {
4188
b: false
4189
}
4190
}
4191
attr {
4192
key: "height"
4193
value {
4194
tensor {
4195
dtype: DT_FLOAT
4196
tensor_shape {
4197
dim {
4198
size: 3
4199
}
4200
}
4201
float_val: 30.0
4202
float_val: 42.4264068604
4203
float_val: 84.8528137207
4204
}
4205
}
4206
}
4207
attr {
4208
key: "variance"
4209
value {
4210
tensor {
4211
dtype: DT_FLOAT
4212
tensor_shape {
4213
dim {
4214
size: 4
4215
}
4216
}
4217
float_val: 0.10000000149
4218
float_val: 0.10000000149
4219
float_val: 0.20000000298
4220
float_val: 0.20000000298
4221
}
4222
}
4223
}
4224
attr {
4225
key: "width"
4226
value {
4227
tensor {
4228
dtype: DT_FLOAT
4229
tensor_shape {
4230
dim {
4231
size: 3
4232
}
4233
}
4234
float_val: 30.0
4235
float_val: 84.8528137207
4236
float_val: 42.4264068604
4237
}
4238
}
4239
}
4240
}
4241
node {
4242
name: "PriorBox_1"
4243
op: "PriorBox"
4244
input: "BoxPredictor_1/BoxEncodingPredictor/BiasAdd"
4245
input: "image_tensor"
4246
attr {
4247
key: "clip"
4248
value {
4249
b: false
4250
}
4251
}
4252
attr {
4253
key: "flip"
4254
value {
4255
b: false
4256
}
4257
}
4258
attr {
4259
key: "height"
4260
value {
4261
tensor {
4262
dtype: DT_FLOAT
4263
tensor_shape {
4264
dim {
4265
size: 6
4266
}
4267
}
4268
float_val: 105.0
4269
float_val: 74.2462158203
4270
float_val: 148.492431641
4271
float_val: 60.6217765808
4272
float_val: 181.956329346
4273
float_val: 125.499000549
4274
}
4275
}
4276
}
4277
attr {
4278
key: "variance"
4279
value {
4280
tensor {
4281
dtype: DT_FLOAT
4282
tensor_shape {
4283
dim {
4284
size: 4
4285
}
4286
}
4287
float_val: 0.10000000149
4288
float_val: 0.10000000149
4289
float_val: 0.20000000298
4290
float_val: 0.20000000298
4291
}
4292
}
4293
}
4294
attr {
4295
key: "width"
4296
value {
4297
tensor {
4298
dtype: DT_FLOAT
4299
tensor_shape {
4300
dim {
4301
size: 6
4302
}
4303
}
4304
float_val: 105.0
4305
float_val: 148.492431641
4306
float_val: 74.2462158203
4307
float_val: 181.865341187
4308
float_val: 60.5914611816
4309
float_val: 125.499000549
4310
}
4311
}
4312
}
4313
}
4314
node {
4315
name: "PriorBox_2"
4316
op: "PriorBox"
4317
input: "BoxPredictor_2/BoxEncodingPredictor/BiasAdd"
4318
input: "image_tensor"
4319
attr {
4320
key: "clip"
4321
value {
4322
b: false
4323
}
4324
}
4325
attr {
4326
key: "flip"
4327
value {
4328
b: false
4329
}
4330
}
4331
attr {
4332
key: "height"
4333
value {
4334
tensor {
4335
dtype: DT_FLOAT
4336
tensor_shape {
4337
dim {
4338
size: 6
4339
}
4340
}
4341
float_val: 150.0
4342
float_val: 106.066017151
4343
float_val: 212.132034302
4344
float_val: 86.6025390625
4345
float_val: 259.93762207
4346
float_val: 171.026306152
4347
}
4348
}
4349
}
4350
attr {
4351
key: "variance"
4352
value {
4353
tensor {
4354
dtype: DT_FLOAT
4355
tensor_shape {
4356
dim {
4357
size: 4
4358
}
4359
}
4360
float_val: 0.10000000149
4361
float_val: 0.10000000149
4362
float_val: 0.20000000298
4363
float_val: 0.20000000298
4364
}
4365
}
4366
}
4367
attr {
4368
key: "width"
4369
value {
4370
tensor {
4371
dtype: DT_FLOAT
4372
tensor_shape {
4373
dim {
4374
size: 6
4375
}
4376
}
4377
float_val: 150.0
4378
float_val: 212.132034302
4379
float_val: 106.066017151
4380
float_val: 259.807617188
4381
float_val: 86.5592269897
4382
float_val: 171.026306152
4383
}
4384
}
4385
}
4386
}
4387
node {
4388
name: "PriorBox_3"
4389
op: "PriorBox"
4390
input: "BoxPredictor_3/BoxEncodingPredictor/BiasAdd"
4391
input: "image_tensor"
4392
attr {
4393
key: "clip"
4394
value {
4395
b: false
4396
}
4397
}
4398
attr {
4399
key: "flip"
4400
value {
4401
b: false
4402
}
4403
}
4404
attr {
4405
key: "height"
4406
value {
4407
tensor {
4408
dtype: DT_FLOAT
4409
tensor_shape {
4410
dim {
4411
size: 6
4412
}
4413
}
4414
float_val: 195.0
4415
float_val: 137.885818481
4416
float_val: 275.771636963
4417
float_val: 112.583305359
4418
float_val: 337.918914795
4419
float_val: 216.333084106
4420
}
4421
}
4422
}
4423
attr {
4424
key: "variance"
4425
value {
4426
tensor {
4427
dtype: DT_FLOAT
4428
tensor_shape {
4429
dim {
4430
size: 4
4431
}
4432
}
4433
float_val: 0.10000000149
4434
float_val: 0.10000000149
4435
float_val: 0.20000000298
4436
float_val: 0.20000000298
4437
}
4438
}
4439
}
4440
attr {
4441
key: "width"
4442
value {
4443
tensor {
4444
dtype: DT_FLOAT
4445
tensor_shape {
4446
dim {
4447
size: 6
4448
}
4449
}
4450
float_val: 195.0
4451
float_val: 275.771636963
4452
float_val: 137.885818481
4453
float_val: 337.749908447
4454
float_val: 112.527000427
4455
float_val: 216.333084106
4456
}
4457
}
4458
}
4459
}
4460
node {
4461
name: "PriorBox_4"
4462
op: "PriorBox"
4463
input: "BoxPredictor_4/BoxEncodingPredictor/BiasAdd"
4464
input: "image_tensor"
4465
attr {
4466
key: "clip"
4467
value {
4468
b: false
4469
}
4470
}
4471
attr {
4472
key: "flip"
4473
value {
4474
b: false
4475
}
4476
}
4477
attr {
4478
key: "height"
4479
value {
4480
tensor {
4481
dtype: DT_FLOAT
4482
tensor_shape {
4483
dim {
4484
size: 6
4485
}
4486
}
4487
float_val: 240.0
4488
float_val: 169.705627441
4489
float_val: 339.411254883
4490
float_val: 138.564071655
4491
float_val: 415.90020752
4492
float_val: 261.533935547
4493
}
4494
}
4495
}
4496
attr {
4497
key: "variance"
4498
value {
4499
tensor {
4500
dtype: DT_FLOAT
4501
tensor_shape {
4502
dim {
4503
size: 4
4504
}
4505
}
4506
float_val: 0.10000000149
4507
float_val: 0.10000000149
4508
float_val: 0.20000000298
4509
float_val: 0.20000000298
4510
}
4511
}
4512
}
4513
attr {
4514
key: "width"
4515
value {
4516
tensor {
4517
dtype: DT_FLOAT
4518
tensor_shape {
4519
dim {
4520
size: 6
4521
}
4522
}
4523
float_val: 240.0
4524
float_val: 339.411254883
4525
float_val: 169.705627441
4526
float_val: 415.692199707
4527
float_val: 138.494766235
4528
float_val: 261.533935547
4529
}
4530
}
4531
}
4532
}
4533
node {
4534
name: "PriorBox_5"
4535
op: "PriorBox"
4536
input: "BoxPredictor_5/BoxEncodingPredictor/BiasAdd"
4537
input: "image_tensor"
4538
attr {
4539
key: "clip"
4540
value {
4541
b: false
4542
}
4543
}
4544
attr {
4545
key: "flip"
4546
value {
4547
b: false
4548
}
4549
}
4550
attr {
4551
key: "height"
4552
value {
4553
tensor {
4554
dtype: DT_FLOAT
4555
tensor_shape {
4556
dim {
4557
size: 6
4558
}
4559
}
4560
float_val: 285.0
4561
float_val: 201.525436401
4562
float_val: 403.050872803
4563
float_val: 164.544830322
4564
float_val: 493.881469727
4565
float_val: 292.403839111
4566
}
4567
}
4568
}
4569
attr {
4570
key: "variance"
4571
value {
4572
tensor {
4573
dtype: DT_FLOAT
4574
tensor_shape {
4575
dim {
4576
size: 4
4577
}
4578
}
4579
float_val: 0.10000000149
4580
float_val: 0.10000000149
4581
float_val: 0.20000000298
4582
float_val: 0.20000000298
4583
}
4584
}
4585
}
4586
attr {
4587
key: "width"
4588
value {
4589
tensor {
4590
dtype: DT_FLOAT
4591
tensor_shape {
4592
dim {
4593
size: 6
4594
}
4595
}
4596
float_val: 285.0
4597
float_val: 403.050872803
4598
float_val: 201.525436401
4599
float_val: 493.634490967
4600
float_val: 164.462539673
4601
float_val: 292.403839111
4602
}
4603
}
4604
}
4605
}
4606
node {
4607
name: "PriorBox/concat"
4608
op: "ConcatV2"
4609
input: "PriorBox_0"
4610
input: "PriorBox_1"
4611
input: "PriorBox_2"
4612
input: "PriorBox_3"
4613
input: "PriorBox_4"
4614
input: "PriorBox_5"
4615
input: "concat/axis_flatten"
4616
}
4617
node {
4618
name: "ClassPredictor/concat/sigmoid"
4619
op: "Sigmoid"
4620
input: "ClassPredictor/concat"
4621
}
4622
node {
4623
name: "detection_out"
4624
op: "DetectionOutput"
4625
input: "BoxEncodingPredictor/concat"
4626
input: "ClassPredictor/concat/sigmoid"
4627
input: "PriorBox/concat"
4628
attr {
4629
key: "background_label_id"
4630
value {
4631
i: 0
4632
}
4633
}
4634
attr {
4635
key: "code_type"
4636
value {
4637
s: "CENTER_SIZE"
4638
}
4639
}
4640
attr {
4641
key: "confidence_threshold"
4642
value {
4643
f: 0.00999999977648
4644
}
4645
}
4646
attr {
4647
key: "keep_top_k"
4648
value {
4649
i: 100
4650
}
4651
}
4652
attr {
4653
key: "nms_threshold"
4654
value {
4655
f: 0.600000023842
4656
}
4657
}
4658
attr {
4659
key: "num_classes"
4660
value {
4661
i: 91
4662
}
4663
}
4664
attr {
4665
key: "share_location"
4666
value {
4667
b: true
4668
}
4669
}
4670
attr {
4671
key: "top_k"
4672
value {
4673
i: 100
4674
}
4675
}
4676
}
4677
library {
4678
}
4679