Path: blob/master/FaceMaskOverlay/lib/datasets/face300w.py
3443 views
# ------------------------------------------------------------------------------1# Copyright (c) Microsoft2# Licensed under the MIT License.3# Created by Tianheng Cheng([email protected]), Yang Zhao4# ------------------------------------------------------------------------------56import os7import random89import torch10import torch.utils.data as data11import pandas as pd12from PIL import Image13import numpy as np1415from ..utils.transforms import fliplr_joints, crop, generate_target, transform_pixel161718class Face300W(data.Dataset):1920def __init__(self, cfg, is_train=True, transform=None):21# specify annotation file for dataset22if is_train:23self.csv_file = cfg.DATASET.TRAINSET24else:25self.csv_file = cfg.DATASET.TESTSET2627self.is_train = is_train28self.transform = transform29self.data_root = cfg.DATASET.ROOT30self.input_size = cfg.MODEL.IMAGE_SIZE31self.output_size = cfg.MODEL.HEATMAP_SIZE32self.sigma = cfg.MODEL.SIGMA33self.scale_factor = cfg.DATASET.SCALE_FACTOR34self.rot_factor = cfg.DATASET.ROT_FACTOR35self.label_type = cfg.MODEL.TARGET_TYPE36self.flip = cfg.DATASET.FLIP3738# load annotations39self.landmarks_frame = pd.read_csv(self.csv_file)4041self.mean = np.array([0.485, 0.456, 0.406], dtype=np.float32)42self.std = np.array([0.229, 0.224, 0.225], dtype=np.float32)4344def __len__(self):45return len(self.landmarks_frame)4647def __getitem__(self, idx):4849image_path = os.path.join(self.data_root,50self.landmarks_frame.iloc[idx, 0])51scale = self.landmarks_frame.iloc[idx, 1]5253center_w = self.landmarks_frame.iloc[idx, 2]54center_h = self.landmarks_frame.iloc[idx, 3]55center = torch.Tensor([center_w, center_h])5657pts = self.landmarks_frame.iloc[idx, 4:].values58pts = pts.astype('float').reshape(-1, 2)5960scale *= 1.2561nparts = pts.shape[0]62img = np.array(Image.open(image_path).convert('RGB'), dtype=np.float32)6364r = 065if self.is_train:66scale = scale * (random.uniform(1 - self.scale_factor,671 + self.scale_factor))68r = random.uniform(-self.rot_factor, self.rot_factor) \69if random.random() <= 0.6 else 070if random.random() <= 0.5 and self.flip:71img = np.fliplr(img)72pts = fliplr_joints(pts, width=img.shape[1], dataset='300W')73center[0] = img.shape[1] - center[0]7475img = crop(img, center, scale, self.input_size, rot=r)7677target = np.zeros((nparts, self.output_size[0], self.output_size[1]))78tpts = pts.copy()7980for i in range(nparts):81if tpts[i, 1] > 0:82tpts[i, 0:2] = transform_pixel(tpts[i, 0:2]+1, center,83scale, self.output_size, rot=r)84target[i] = generate_target(target[i], tpts[i]-1, self.sigma,85label_type=self.label_type)86img = img.astype(np.float32)87img = (img/255.0 - self.mean) / self.std88img = img.transpose([2, 0, 1])89target = torch.Tensor(target)90tpts = torch.Tensor(tpts)91center = torch.Tensor(center)9293meta = {'index': idx, 'center': center, 'scale': scale,94'pts': torch.Tensor(pts), 'tpts': tpts}9596return img, target, meta979899if __name__ == '__main__':100101pass102103104