Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
hackassin
GitHub Repository: hackassin/learnopencv
Path: blob/master/FaceMaskOverlay/lib/datasets/wflw.py
3443 views
1
# ------------------------------------------------------------------------------
2
# Copyright (c) Microsoft
3
# Licensed under the MIT License.
4
# Created by Tianheng Cheng([email protected]), Yang Zhao
5
# ------------------------------------------------------------------------------
6
7
import os
8
import random
9
10
import torch
11
import torch.utils.data as data
12
import pandas as pd
13
from PIL import Image
14
import numpy as np
15
16
from ..utils.transforms import fliplr_joints, crop, generate_target, transform_pixel
17
18
19
class WFLW(data.Dataset):
20
def __init__(self, cfg, is_train=True, transform=None):
21
# specify annotation file for dataset
22
if is_train:
23
self.csv_file = cfg.DATASET.TRAINSET
24
else:
25
self.csv_file = cfg.DATASET.TESTSET
26
27
self.is_train = is_train
28
self.transform = transform
29
self.data_root = cfg.DATASET.ROOT
30
self.input_size = cfg.MODEL.IMAGE_SIZE
31
self.output_size = cfg.MODEL.HEATMAP_SIZE
32
self.sigma = cfg.MODEL.SIGMA
33
self.scale_factor = cfg.DATASET.SCALE_FACTOR
34
self.rot_factor = cfg.DATASET.ROT_FACTOR
35
self.label_type = cfg.MODEL.TARGET_TYPE
36
self.flip = cfg.DATASET.FLIP
37
38
# load annotations
39
self.landmarks_frame = pd.read_csv(self.csv_file)
40
41
self.mean = np.array([0.485, 0.456, 0.406], dtype=np.float32)
42
self.std = np.array([0.229, 0.224, 0.225], dtype=np.float32)
43
44
def __len__(self):
45
return len(self.landmarks_frame)
46
47
def __getitem__(self, idx):
48
49
image_path = os.path.join(self.data_root,
50
self.landmarks_frame.iloc[idx, 0])
51
scale = self.landmarks_frame.iloc[idx, 1]
52
53
center_w = self.landmarks_frame.iloc[idx, 2]
54
center_h = self.landmarks_frame.iloc[idx, 3]
55
center = torch.Tensor([center_w, center_h])
56
57
pts = self.landmarks_frame.iloc[idx, 4:].values
58
pts = pts.astype('float').reshape(-1, 2)
59
60
scale *= 1.25
61
nparts = pts.shape[0]
62
img = np.array(Image.open(image_path).convert('RGB'), dtype=np.float32)
63
64
r = 0
65
if self.is_train:
66
scale = scale * (random.uniform(1 - self.scale_factor,
67
1 + self.scale_factor))
68
r = random.uniform(-self.rot_factor, self.rot_factor) \
69
if random.random() <= 0.6 else 0
70
if random.random() <= 0.5 and self.flip:
71
img = np.fliplr(img)
72
pts = fliplr_joints(pts, width=img.shape[1], dataset='WFLW')
73
center[0] = img.shape[1] - center[0]
74
75
img = crop(img, center, scale, self.input_size, rot=r)
76
77
target = np.zeros((nparts, self.output_size[0], self.output_size[1]))
78
tpts = pts.copy()
79
80
for i in range(nparts):
81
if tpts[i, 1] > 0:
82
tpts[i, 0:2] = transform_pixel(tpts[i, 0:2]+1, center,
83
scale, self.output_size, rot=r)
84
target[i] = generate_target(target[i], tpts[i]-1, self.sigma,
85
label_type=self.label_type)
86
img = img.astype(np.float32)
87
img = (img/255.0 - self.mean) / self.std
88
img = img.transpose([2, 0, 1])
89
target = torch.Tensor(target)
90
tpts = torch.Tensor(tpts)
91
center = torch.Tensor(center)
92
93
meta = {'index': idx, 'center': center, 'scale': scale,
94
'pts': torch.Tensor(pts), 'tpts': tpts}
95
96
return img, target, meta
97
98
99
if __name__ == '__main__':
100
pass
101
102