Path: blob/master/FaceMaskOverlay/lib/models/hrnet.py
3443 views
# ------------------------------------------------------------------------------1# Copyright (c) Microsoft2# Licensed under the MIT License.3# Create by Bin Xiao ([email protected])4# Modified by Tianheng Cheng([email protected]), Yang Zhao5# ------------------------------------------------------------------------------67from __future__ import absolute_import8from __future__ import division9from __future__ import print_function1011import os12import logging1314import torch15import torch.nn as nn16import torch.nn.functional as F171819BatchNorm2d = nn.BatchNorm2d20BN_MOMENTUM = 0.0121logger = logging.getLogger(__name__)222324def conv3x3(in_planes, out_planes, stride=1):25"""3x3 convolution with padding"""26return nn.Conv2d(in_planes, out_planes, kernel_size=3,27stride=stride, padding=1, bias=False)282930class BasicBlock(nn.Module):31expansion = 13233def __init__(self, inplanes, planes, stride=1, downsample=None):34super(BasicBlock, self).__init__()35self.conv1 = conv3x3(inplanes, planes, stride)36self.bn1 = BatchNorm2d(planes, momentum=BN_MOMENTUM)37self.relu = nn.ReLU(inplace=True)38self.conv2 = conv3x3(planes, planes)39self.bn2 = BatchNorm2d(planes, momentum=BN_MOMENTUM)40self.downsample = downsample41self.stride = stride4243def forward(self, x):44residual = x4546out = self.conv1(x)47out = self.bn1(out)48out = self.relu(out)4950out = self.conv2(out)51out = self.bn2(out)5253if self.downsample is not None:54residual = self.downsample(x)5556out += residual57out = self.relu(out)5859return out606162class Bottleneck(nn.Module):63expansion = 46465def __init__(self, inplanes, planes, stride=1, downsample=None):66super(Bottleneck, self).__init__()67self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)68self.bn1 = BatchNorm2d(planes, momentum=BN_MOMENTUM)69self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,70padding=1, bias=False)71self.bn2 = BatchNorm2d(planes, momentum=BN_MOMENTUM)72self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1,73bias=False)74self.bn3 = BatchNorm2d(planes * self.expansion,75momentum=BN_MOMENTUM)76self.relu = nn.ReLU(inplace=True)77self.downsample = downsample78self.stride = stride7980def forward(self, x):81residual = x8283out = self.conv1(x)84out = self.bn1(out)85out = self.relu(out)8687out = self.conv2(out)88out = self.bn2(out)89out = self.relu(out)9091out = self.conv3(out)92out = self.bn3(out)9394if self.downsample is not None:95residual = self.downsample(x)9697out += residual98out = self.relu(out)99100return out101102103class HighResolutionModule(nn.Module):104def __init__(self, num_branches, blocks, num_blocks, num_inchannels,105num_channels, fuse_method, multi_scale_output=True):106super(HighResolutionModule, self).__init__()107self._check_branches(108num_branches, blocks, num_blocks, num_inchannels, num_channels)109110self.num_inchannels = num_inchannels111self.fuse_method = fuse_method112self.num_branches = num_branches113114self.multi_scale_output = multi_scale_output115116self.branches = self._make_branches(117num_branches, blocks, num_blocks, num_channels)118self.fuse_layers = self._make_fuse_layers()119self.relu = nn.ReLU(inplace=True)120121def _check_branches(self, num_branches, blocks, num_blocks,122num_inchannels, num_channels):123if num_branches != len(num_blocks):124error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format(125num_branches, len(num_blocks))126logger.error(error_msg)127raise ValueError(error_msg)128129if num_branches != len(num_channels):130error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format(131num_branches, len(num_channels))132logger.error(error_msg)133raise ValueError(error_msg)134135if num_branches != len(num_inchannels):136error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format(137num_branches, len(num_inchannels))138logger.error(error_msg)139raise ValueError(error_msg)140141def _make_one_branch(self, branch_index, block, num_blocks, num_channels,142stride=1):143downsample = None144if stride != 1 or \145self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion:146downsample = nn.Sequential(147nn.Conv2d(self.num_inchannels[branch_index],148num_channels[branch_index] * block.expansion,149kernel_size=1, stride=stride, bias=False),150BatchNorm2d(num_channels[branch_index] * block.expansion,151momentum=BN_MOMENTUM),152)153154layers = []155layers.append(block(self.num_inchannels[branch_index],156num_channels[branch_index], stride, downsample))157self.num_inchannels[branch_index] = \158num_channels[branch_index] * block.expansion159for i in range(1, num_blocks[branch_index]):160layers.append(block(self.num_inchannels[branch_index],161num_channels[branch_index]))162163return nn.Sequential(*layers)164165def _make_branches(self, num_branches, block, num_blocks, num_channels):166branches = []167168for i in range(num_branches):169branches.append(170self._make_one_branch(i, block, num_blocks, num_channels))171172return nn.ModuleList(branches)173174def _make_fuse_layers(self):175if self.num_branches == 1:176return None177178num_branches = self.num_branches179num_inchannels = self.num_inchannels180fuse_layers = []181for i in range(num_branches if self.multi_scale_output else 1):182fuse_layer = []183for j in range(num_branches):184if j > i:185fuse_layer.append(nn.Sequential(186nn.Conv2d(num_inchannels[j],187num_inchannels[i],1881,1891,1900,191bias=False),192BatchNorm2d(num_inchannels[i], momentum=BN_MOMENTUM)))193# nn.Upsample(scale_factor=2**(j-i), mode='nearest')))194elif j == i:195fuse_layer.append(None)196else:197conv3x3s = []198for k in range(i - j):199if k == i - j - 1:200num_outchannels_conv3x3 = num_inchannels[i]201conv3x3s.append(nn.Sequential(202nn.Conv2d(num_inchannels[j],203num_outchannels_conv3x3,2043, 2, 1, bias=False),205BatchNorm2d(num_outchannels_conv3x3, momentum=BN_MOMENTUM)))206else:207num_outchannels_conv3x3 = num_inchannels[j]208conv3x3s.append(nn.Sequential(209nn.Conv2d(num_inchannels[j],210num_outchannels_conv3x3,2113, 2, 1, bias=False),212BatchNorm2d(num_outchannels_conv3x3,213momentum=BN_MOMENTUM),214nn.ReLU(inplace=True)))215fuse_layer.append(nn.Sequential(*conv3x3s))216fuse_layers.append(nn.ModuleList(fuse_layer))217218return nn.ModuleList(fuse_layers)219220def get_num_inchannels(self):221return self.num_inchannels222223def forward(self, x):224if self.num_branches == 1:225return [self.branches[0](x[0])]226227for i in range(self.num_branches):228x[i] = self.branches[i](x[i])229230x_fuse = []231for i in range(len(self.fuse_layers)):232y = x[0] if i == 0 else self.fuse_layers[i][0](x[0])233for j in range(1, self.num_branches):234if i == j:235y = y + x[j]236elif j > i:237y = y + F.interpolate(238self.fuse_layers[i][j](x[j]),239size=[x[i].shape[2], x[i].shape[3]],240mode='bilinear')241else:242y = y + self.fuse_layers[i][j](x[j])243x_fuse.append(self.relu(y))244245return x_fuse246247248blocks_dict = {249'BASIC': BasicBlock,250'BOTTLENECK': Bottleneck251}252253254class HighResolutionNet(nn.Module):255256def __init__(self, config, **kwargs):257self.inplanes = 64258extra = config.MODEL.EXTRA259super(HighResolutionNet, self).__init__()260261# stem net262self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1,263bias=False)264self.bn1 = BatchNorm2d(64, momentum=BN_MOMENTUM)265self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1,266bias=False)267self.bn2 = BatchNorm2d(64, momentum=BN_MOMENTUM)268self.relu = nn.ReLU(inplace=True)269self.sf = nn.Softmax(dim=1)270self.layer1 = self._make_layer(Bottleneck, 64, 64, 4)271272self.stage2_cfg = extra['STAGE2']273num_channels = self.stage2_cfg['NUM_CHANNELS']274block = blocks_dict[self.stage2_cfg['BLOCK']]275num_channels = [276num_channels[i] * block.expansion for i in range(len(num_channels))]277self.transition1 = self._make_transition_layer(278[256], num_channels)279self.stage2, pre_stage_channels = self._make_stage(280self.stage2_cfg, num_channels)281282self.stage3_cfg = extra['STAGE3']283num_channels = self.stage3_cfg['NUM_CHANNELS']284block = blocks_dict[self.stage3_cfg['BLOCK']]285num_channels = [286num_channels[i] * block.expansion for i in range(len(num_channels))]287self.transition2 = self._make_transition_layer(288pre_stage_channels, num_channels)289self.stage3, pre_stage_channels = self._make_stage(290self.stage3_cfg, num_channels)291292self.stage4_cfg = extra['STAGE4']293num_channels = self.stage4_cfg['NUM_CHANNELS']294block = blocks_dict[self.stage4_cfg['BLOCK']]295num_channels = [296num_channels[i] * block.expansion for i in range(len(num_channels))]297self.transition3 = self._make_transition_layer(298pre_stage_channels, num_channels)299self.stage4, pre_stage_channels = self._make_stage(300self.stage4_cfg, num_channels, multi_scale_output=True)301302final_inp_channels = sum(pre_stage_channels)303304self.head = nn.Sequential(305nn.Conv2d(306in_channels=final_inp_channels,307out_channels=final_inp_channels,308kernel_size=1,309stride=1,310padding=1 if extra.FINAL_CONV_KERNEL == 3 else 0),311BatchNorm2d(final_inp_channels, momentum=BN_MOMENTUM),312nn.ReLU(inplace=True),313nn.Conv2d(314in_channels=final_inp_channels,315out_channels=config.MODEL.NUM_JOINTS,316kernel_size=extra.FINAL_CONV_KERNEL,317stride=1,318padding=1 if extra.FINAL_CONV_KERNEL == 3 else 0)319)320321def _make_transition_layer(322self, num_channels_pre_layer, num_channels_cur_layer):323num_branches_cur = len(num_channels_cur_layer)324num_branches_pre = len(num_channels_pre_layer)325326transition_layers = []327for i in range(num_branches_cur):328if i < num_branches_pre:329if num_channels_cur_layer[i] != num_channels_pre_layer[i]:330transition_layers.append(nn.Sequential(331nn.Conv2d(num_channels_pre_layer[i],332num_channels_cur_layer[i],3333,3341,3351,336bias=False),337BatchNorm2d(338num_channels_cur_layer[i], momentum=BN_MOMENTUM),339nn.ReLU(inplace=True)))340else:341transition_layers.append(None)342else:343conv3x3s = []344for j in range(i + 1 - num_branches_pre):345inchannels = num_channels_pre_layer[-1]346outchannels = num_channels_cur_layer[i] \347if j == i - num_branches_pre else inchannels348conv3x3s.append(nn.Sequential(349nn.Conv2d(350inchannels, outchannels, 3, 2, 1, bias=False),351BatchNorm2d(outchannels, momentum=BN_MOMENTUM),352nn.ReLU(inplace=True)))353transition_layers.append(nn.Sequential(*conv3x3s))354355return nn.ModuleList(transition_layers)356357def _make_layer(self, block, inplanes, planes, blocks, stride=1):358downsample = None359if stride != 1 or inplanes != planes * block.expansion:360downsample = nn.Sequential(361nn.Conv2d(inplanes, planes * block.expansion,362kernel_size=1, stride=stride, bias=False),363BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM),364)365366layers = []367layers.append(block(inplanes, planes, stride, downsample))368inplanes = planes * block.expansion369for i in range(1, blocks):370layers.append(block(inplanes, planes))371372return nn.Sequential(*layers)373374def _make_stage(self, layer_config, num_inchannels,375multi_scale_output=True):376num_modules = layer_config['NUM_MODULES']377num_branches = layer_config['NUM_BRANCHES']378num_blocks = layer_config['NUM_BLOCKS']379num_channels = layer_config['NUM_CHANNELS']380block = blocks_dict[layer_config['BLOCK']]381fuse_method = layer_config['FUSE_METHOD']382383modules = []384for i in range(num_modules):385# multi_scale_output is only used last module386if not multi_scale_output and i == num_modules - 1:387reset_multi_scale_output = False388else:389reset_multi_scale_output = True390modules.append(391HighResolutionModule(num_branches,392block,393num_blocks,394num_inchannels,395num_channels,396fuse_method,397reset_multi_scale_output)398)399num_inchannels = modules[-1].get_num_inchannels()400401return nn.Sequential(*modules), num_inchannels402403def forward(self, x):404# h, w = x.size(2), x.size(3)405x = self.conv1(x)406x = self.bn1(x)407x = self.relu(x)408x = self.conv2(x)409x = self.bn2(x)410x = self.relu(x)411x = self.layer1(x)412413x_list = []414for i in range(self.stage2_cfg['NUM_BRANCHES']):415if self.transition1[i] is not None:416x_list.append(self.transition1[i](x))417else:418x_list.append(x)419y_list = self.stage2(x_list)420421x_list = []422for i in range(self.stage3_cfg['NUM_BRANCHES']):423if self.transition2[i] is not None:424x_list.append(self.transition2[i](y_list[-1]))425else:426x_list.append(y_list[i])427y_list = self.stage3(x_list)428429x_list = []430for i in range(self.stage4_cfg['NUM_BRANCHES']):431if self.transition3[i] is not None:432x_list.append(self.transition3[i](y_list[-1]))433else:434x_list.append(y_list[i])435x = self.stage4(x_list)436437# Head Part438height, width = x[0].size(2), x[0].size(3)439x1 = F.interpolate(x[1], size=(height, width), mode='bilinear', align_corners=False)440x2 = F.interpolate(x[2], size=(height, width), mode='bilinear', align_corners=False)441x3 = F.interpolate(x[3], size=(height, width), mode='bilinear', align_corners=False)442x = torch.cat([x[0], x1, x2, x3], 1)443x = self.head(x)444445return x446447def init_weights(self, pretrained=''):448logger.info('=> init weights from normal distribution')449for m in self.modules():450if isinstance(m, nn.Conv2d):451# nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')452nn.init.normal_(m.weight, std=0.001)453# nn.init.constant_(m.bias, 0)454elif isinstance(m, nn.BatchNorm2d):455nn.init.constant_(m.weight, 1)456nn.init.constant_(m.bias, 0)457if os.path.isfile(pretrained):458pretrained_dict = torch.load(pretrained)459logger.info('=> loading pretrained model {}'.format(pretrained))460model_dict = self.state_dict()461pretrained_dict = {k: v for k, v in pretrained_dict.items()462if k in model_dict.keys()}463for k, _ in pretrained_dict.items():464logger.info(465'=> loading {} pretrained model {}'.format(k, pretrained))466model_dict.update(pretrained_dict)467self.load_state_dict(model_dict)468469470def get_face_alignment_net(config, **kwargs):471472model = HighResolutionNet(config, **kwargs)473pretrained = config.MODEL.PRETRAINED if config.MODEL.INIT_WEIGHTS else ''474model.init_weights(pretrained=pretrained)475476return model477478479480