Path: blob/master/FacialAttractiveness/source/cross_validation.py
3143 views
import numpy as np1import matplotlib.pyplot as plt2from sklearn import linear_model3from sklearn import decomposition4from sklearn import cross_validation56## read data7features = np.loadtxt('features_ALL.txt', delimiter=',')8ratings = np.loadtxt('labels.txt', delimiter=',')9predictions = np.zeros(ratings.size);1011for i in range(0, 500):12features_train = np.delete(features, i, 0)13features_test = features[i, :]14ratings_train = np.delete(ratings, i, 0)15ratings_test = ratings[i]16pca = decomposition.PCA(n_components=20)17pca.fit(features_train)18features_train = pca.transform(features_train)19features_test = pca.transform(features_test)20regr = linear_model.LinearRegression()21regr.fit(features_train, ratings_train)22predictions[i] = regr.predict(features_test)23print i2425np.savetxt('cross_valid_predictions.txt', predictions, delimiter=',', fmt = '%.04f')2627corr = np.corrcoef(predictions, ratings)[0, 1]28print corr29303132