Path: blob/master/FacialAttractiveness/source/trainModel.py
3143 views
import numpy as np1import matplotlib.pyplot as plt2from sklearn import linear_model3from sklearn import decomposition45features = np.loadtxt('features_ALL.txt', delimiter=',')6#features = preprocessing.scale(features)7features_train = features[0:-50]8features_test = features[-50:]910pca = decomposition.PCA(n_components=20)11pca.fit(features_train)12features_train = pca.transform(features_train)13features_test = pca.transform(features_test)1415ratings = np.loadtxt('labels.txt', delimiter=',')16#ratings = preprocessing.scale(ratings)17ratings_train = ratings[0:-50]18ratings_test = ratings[-50:]1920regr = linear_model.LinearRegression()21regr.fit(features_train, ratings_train)22ratings_predict = regr.predict(features_test)23corr = np.corrcoef(ratings_predict, ratings_test)[0, 1]24print corr2526residue = np.mean((ratings_predict - ratings_test) ** 2)27print residue2829rangeArray = np.arange(1, 51)30plt.plot(rangeArray, ratings_test, 'r', rangeArray, ratings_predict, 'b')31plt.show()323334