Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
hackassin
GitHub Repository: hackassin/learnopencv
Path: blob/master/FacialAttractiveness/source/trainModel.py
3143 views
1
import numpy as np
2
import matplotlib.pyplot as plt
3
from sklearn import linear_model
4
from sklearn import decomposition
5
6
features = np.loadtxt('features_ALL.txt', delimiter=',')
7
#features = preprocessing.scale(features)
8
features_train = features[0:-50]
9
features_test = features[-50:]
10
11
pca = decomposition.PCA(n_components=20)
12
pca.fit(features_train)
13
features_train = pca.transform(features_train)
14
features_test = pca.transform(features_test)
15
16
ratings = np.loadtxt('labels.txt', delimiter=',')
17
#ratings = preprocessing.scale(ratings)
18
ratings_train = ratings[0:-50]
19
ratings_test = ratings[-50:]
20
21
regr = linear_model.LinearRegression()
22
regr.fit(features_train, ratings_train)
23
ratings_predict = regr.predict(features_test)
24
corr = np.corrcoef(ratings_predict, ratings_test)[0, 1]
25
print corr
26
27
residue = np.mean((ratings_predict - ratings_test) ** 2)
28
print residue
29
30
rangeArray = np.arange(1, 51)
31
plt.plot(rangeArray, ratings_test, 'r', rangeArray, ratings_predict, 'b')
32
plt.show()
33
34