Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
holoviz
GitHub Repository: holoviz/panel
Path: blob/main/doc/how_to/best_practices/user_experience.md
2012 views

User Experience

import time import random import param import pandas as pd import panel as pn pn.extension()

The best practices described on this page serve as a checklist of items to keep in mind as you are developing your application. They include items we see users frequently get confused about or things that are easily missed but can make a big difference to the user experience of your application(s).

:::{note}

  • Good: recommended, works.

  • Okay: works (with intended behavior), potentially inefficient.

  • Bad: Deprecated (may or may not work), just don't do it.

  • Wrong: Not intended behavior, won't really work. :::

Update params effectively

Good

Use obj.param.update:

  • to update multiple parameters on an object simultaneously

  • as a context manager to temporarily set values, restoring original values on completion

def run(event): with progress.param.update( bar_color="primary", active=True, ): for i in range(0, 101): time.sleep(0.01) progress.value = i button = pn.widgets.Button(name="Run", on_click=run) progress = pn.indicators.Progress(value=100, active=False, bar_color="dark") pn.Row(button, progress)

Okay

The following shows setting parameters individually, which could be inefficient and may temporarily leave the object in an inconsistent state.

def run(event): try: progress.bar_color = "primary" progress.active = True for i in range(0, 101): time.sleep(0.01) progress.value = i finally: progress.bar_color = "dark" progress.active = False button = pn.widgets.Button(name="Run", on_click=run) progress = pn.indicators.Progress(value=100, active=False, bar_color="dark") pn.Row(button, progress)

Throttle slider callbacks

Good

When callbacks are expensive to run, you can prevent sliders from triggering too many callbacks, by setting throttled=True. When throttled, callbacks will be triggered only once, upon mouse-up.

pn.extension(throttled=True) def callback(value): time.sleep(2) return f"# {value}" slider = pn.widgets.IntSlider(end=10) output = pn.bind(callback, slider) pn.Row(slider, output)

Good

Alternatively, you can apply throttling only to the specific widgets with the most expensive callbacks, by binding to value_throttled instead of value.

def callback(value): time.sleep(2) return f"# {value}" slider = pn.widgets.IntSlider(end=10) output = pn.bind(callback, slider.param.value_throttled) pn.Row(slider, output)

Bad

Binding against value can be really slow for expensive callbacks.

def callback(value): time.sleep(2) return f"# {value}" slider = pn.widgets.IntSlider(end=10) output = pn.bind(callback, slider.param.value) pn.Row(slider, output)

Defer expensive operations

Good

It's easy to defer the execution of all bound and displayed functions with pn.extension(defer_load=True) (note this applies to served applications, not to interactive notebook environments):

pn.extension(defer_load=True, loading_indicator=True) def onload(): time.sleep(5) # simulate expensive operations return pn.Column( "Welcome to this app!", ) layout = pn.Column("Check this out!", onload) # layout.show()

Okay

If you need finer control, start by instantiating the initial layout with placeholder pn.Columns, then populate it later in onload.

import time def onload(): time.sleep(1) # simulate expensive operations layout[:] = ["Welcome to this app!"] layout = pn.Column("Loading...") display(layout) pn.state.onload(onload)

Show indicator while computing

Good

Set loading=pn.state.param.busy to overlay a spinner while processing to let the user know it's working.

def process_load(event): time.sleep(3) button = pn.widgets.Button(name="Click me", on_click=process_load) widget_box = pn.WidgetBox(button, loading=pn.state.param.busy, height=300, width=300) widget_box

Good

Set loading=True to show a spinner while processing to let the user know it's working.

def compute(event): with layout.param.update(loading=True): time.sleep(3) layout.append("Computation complete!") button = pn.widgets.Button(name="Compute", on_click=compute) layout = pn.Column("Click below to compute", button) layout

Okay

You can also wrap a try/finally to do the same thing.

def compute(event): try: layout.loading = True time.sleep(3) layout.append("Computation complete!") finally: layout.loading = False button = pn.widgets.Button(name="Compute", on_click=compute) layout = pn.Column("Click below to compute", button) layout

Manage exceptions gracefully

Good

Use:

  • try block to update values on success

  • except block to update values on exception

  • finally block to update values regardless

def compute(divisor): try: busy.value = True time.sleep(1) output = 1 / divisor text.value = "Success!" except Exception as exc: output = "Undefined" text.value = f"Error: {exc}" finally: busy.value = False return f"Output: {output}" busy = pn.widgets.LoadingSpinner(width=10, height=10) text = pn.widgets.StaticText() slider = pn.widgets.IntSlider(name="Divisor") output = pn.bind(compute, slider) layout = pn.Column(pn.Row(busy, text), slider, output) layout

Cache values for speed

Good

Wrap your callback with a pn.cache decorator so that values are automatically cached so that expensive computations are not repeated.

@pn.cache def callback(value): time.sleep(2) return f"# {value}" slider = pn.widgets.IntSlider(end=3) output = pn.bind(callback, slider.param.value_throttled) pn.Row(slider, output)

Okay

Or, manually handle the cache yourself with pn.state.cache.

def callback(value): output = pn.state.cache.get(value) if output is None: time.sleep(2) output = f"# {value}" pn.state.cache[value] = output return output slider = pn.widgets.IntSlider(end=3) output = pn.bind(callback, slider.param.value_throttled) pn.Row(slider, output)

Preserve axes ranges on update

Good

When you are working with HoloViews or hvPlot in Panel, you can prevent the plot from resetting to its original axes ranges when zoomed in by wrapping it with hv.DynamicMap.

import numpy as np import holoviews as hv hv.extension("bokeh") data = [] def add_point(clicks): data.append((np.random.random(), (np.random.random()))) return hv.Scatter(data) button = pn.widgets.Button(name="Add point") plot = hv.DynamicMap(pn.bind(add_point, button.param.clicks)) pn.Column(button, plot)

Okay

If you want the object to be completely refreshed, simply drop hv.DynamicMap. If it's a long computation, it's good to set loading_indicator=True.

import numpy as np import holoviews as hv hv.extension("bokeh") pn.extension(defer_load=True, loading_indicator=True) data = [] def add_point(clicks): data.append((np.random.random(), (np.random.random()))) return hv.Scatter(data) button = pn.widgets.Button(name="Add point") plot = pn.bind(add_point, button.param.clicks) pn.Column(button, plot)

FlexBox instead of Column/Row

Good

pn.FlexBox automatically moves objects to another row/column, depending on the space available.

rcolor = lambda: "#%06x" % random.randint(0, 0xFFFFFF) pn.FlexBox( pn.pane.HTML(str(5), styles=dict(background=rcolor()), width=1000, height=100), pn.pane.HTML(str(5), styles=dict(background=rcolor()), width=1000, height=100) )

Okay

pn.Column/pn.Row will overflow if the content is too long/wide.

rcolor = lambda: "#%06x" % random.randint(0, 0xFFFFFF) pn.Row( pn.pane.HTML(str(5), styles=dict(background=rcolor()), width=1000, height=100), pn.pane.HTML(str(5), styles=dict(background=rcolor()), width=1000, height=100) )

Reuse objects for efficiency

Good

Imagine Panel components as placeholders and use them as such, rather than re-creating them on update.

def randomize(event): df_pane.object = pd.DataFrame(np.random.randn(10, 3), columns=list("ABC")) button = pn.widgets.Button(name="Compute", on_click=randomize) df_pane = pn.pane.DataFrame() button.param.trigger("clicks") # initialize pn.Column(button, df_pane)

Okay

If your callback returns a Panel object rather than the underlying object being displayed, you'll end up instantiating the pn.pane.DataFrame on every click (which is typically slower and will often have distracting flickering).

def randomize(clicks): return pn.pane.DataFrame(pd.DataFrame(np.random.randn(10, 3), columns=list("ABC"))) button = pn.widgets.Button(name="Compute") df_pane = pn.bind(randomize, button.param.clicks) button.param.trigger("clicks") # initialize pn.Column(button, df_pane)