User Experience
import time
import random
import param
import pandas as pd
import panel as pn
pn.extension()
The best practices described on this page serve as a checklist of items to keep in mind as you are developing your application. They include items we see users frequently get confused about or things that are easily missed but can make a big difference to the user experience of your application(s).
:::{note}
Good: recommended, works.
Okay: works (with intended behavior), potentially inefficient.
Bad: Deprecated (may or may not work), just don't do it.
Wrong: Not intended behavior, won't really work. :::
Update params effectively
Good
Use obj.param.update
:
to update multiple parameters on an object simultaneously
as a context manager to temporarily set values, restoring original values on completion
def run(event):
with progress.param.update(
bar_color="primary",
active=True,
):
for i in range(0, 101):
time.sleep(0.01)
progress.value = i
button = pn.widgets.Button(name="Run", on_click=run)
progress = pn.indicators.Progress(value=100, active=False, bar_color="dark")
pn.Row(button, progress)
Okay
The following shows setting parameters individually, which could be inefficient and may temporarily leave the object in an inconsistent state.
def run(event):
try:
progress.bar_color = "primary"
progress.active = True
for i in range(0, 101):
time.sleep(0.01)
progress.value = i
finally:
progress.bar_color = "dark"
progress.active = False
button = pn.widgets.Button(name="Run", on_click=run)
progress = pn.indicators.Progress(value=100, active=False, bar_color="dark")
pn.Row(button, progress)
Throttle slider callbacks
Good
When callbacks are expensive to run, you can prevent sliders from triggering too many callbacks, by setting throttled=True
. When throttled, callbacks will be triggered only once, upon mouse-up.
pn.extension(throttled=True)
def callback(value):
time.sleep(2)
return f"# {value}"
slider = pn.widgets.IntSlider(end=10)
output = pn.bind(callback, slider)
pn.Row(slider, output)
Good
Alternatively, you can apply throttling only to the specific widgets with the most expensive callbacks, by binding to value_throttled
instead of value
.
def callback(value):
time.sleep(2)
return f"# {value}"
slider = pn.widgets.IntSlider(end=10)
output = pn.bind(callback, slider.param.value_throttled)
pn.Row(slider, output)
Bad
Binding against value
can be really slow for expensive callbacks.
def callback(value):
time.sleep(2)
return f"# {value}"
slider = pn.widgets.IntSlider(end=10)
output = pn.bind(callback, slider.param.value)
pn.Row(slider, output)
Defer expensive operations
Good
It's easy to defer the execution of all bound and displayed functions with pn.extension(defer_load=True)
(note this applies to served applications, not to interactive notebook environments):
pn.extension(defer_load=True, loading_indicator=True)
def onload():
time.sleep(5) # simulate expensive operations
return pn.Column(
"Welcome to this app!",
)
layout = pn.Column("Check this out!", onload)
# layout.show()
Okay
If you need finer control, start by instantiating the initial layout with placeholder pn.Columns
, then populate it later in onload
.
import time
def onload():
time.sleep(1) # simulate expensive operations
layout[:] = ["Welcome to this app!"]
layout = pn.Column("Loading...")
display(layout)
pn.state.onload(onload)
Show indicator while computing
Good
Set loading=pn.state.param.busy
to overlay a spinner while processing to let the user know it's working.
def process_load(event):
time.sleep(3)
button = pn.widgets.Button(name="Click me", on_click=process_load)
widget_box = pn.WidgetBox(button, loading=pn.state.param.busy, height=300, width=300)
widget_box
Good
Set loading=True
to show a spinner while processing to let the user know it's working.
def compute(event):
with layout.param.update(loading=True):
time.sleep(3)
layout.append("Computation complete!")
button = pn.widgets.Button(name="Compute", on_click=compute)
layout = pn.Column("Click below to compute", button)
layout
Okay
You can also wrap a try/finally
to do the same thing.
def compute(event):
try:
layout.loading = True
time.sleep(3)
layout.append("Computation complete!")
finally:
layout.loading = False
button = pn.widgets.Button(name="Compute", on_click=compute)
layout = pn.Column("Click below to compute", button)
layout
Manage exceptions gracefully
Good
Use:
try
block to update values on success
except
block to update values on exception
finally
block to update values regardless
def compute(divisor):
try:
busy.value = True
time.sleep(1)
output = 1 / divisor
text.value = "Success!"
except Exception as exc:
output = "Undefined"
text.value = f"Error: {exc}"
finally:
busy.value = False
return f"Output: {output}"
busy = pn.widgets.LoadingSpinner(width=10, height=10)
text = pn.widgets.StaticText()
slider = pn.widgets.IntSlider(name="Divisor")
output = pn.bind(compute, slider)
layout = pn.Column(pn.Row(busy, text), slider, output)
layout
Cache values for speed
Good
Wrap your callback with a pn.cache
decorator so that values are automatically cached so that expensive computations are not repeated.
@pn.cache
def callback(value):
time.sleep(2)
return f"# {value}"
slider = pn.widgets.IntSlider(end=3)
output = pn.bind(callback, slider.param.value_throttled)
pn.Row(slider, output)
Okay
Or, manually handle the cache yourself with pn.state.cache
.
def callback(value):
output = pn.state.cache.get(value)
if output is None:
time.sleep(2)
output = f"# {value}"
pn.state.cache[value] = output
return output
slider = pn.widgets.IntSlider(end=3)
output = pn.bind(callback, slider.param.value_throttled)
pn.Row(slider, output)
Preserve axes ranges on update
Good
When you are working with HoloViews or hvPlot in Panel, you can prevent the plot from resetting to its original axes ranges when zoomed in by wrapping it with hv.DynamicMap
.
import numpy as np
import holoviews as hv
hv.extension("bokeh")
data = []
def add_point(clicks):
data.append((np.random.random(), (np.random.random())))
return hv.Scatter(data)
button = pn.widgets.Button(name="Add point")
plot = hv.DynamicMap(pn.bind(add_point, button.param.clicks))
pn.Column(button, plot)
Okay
If you want the object to be completely refreshed, simply drop hv.DynamicMap
. If it's a long computation, it's good to set loading_indicator=True
.
import numpy as np
import holoviews as hv
hv.extension("bokeh")
pn.extension(defer_load=True, loading_indicator=True)
data = []
def add_point(clicks):
data.append((np.random.random(), (np.random.random())))
return hv.Scatter(data)
button = pn.widgets.Button(name="Add point")
plot = pn.bind(add_point, button.param.clicks)
pn.Column(button, plot)
FlexBox instead of Column/Row
Good
pn.FlexBox
automatically moves objects to another row/column, depending on the space available.
rcolor = lambda: "#%06x" % random.randint(0, 0xFFFFFF)
pn.FlexBox(
pn.pane.HTML(str(5), styles=dict(background=rcolor()), width=1000, height=100),
pn.pane.HTML(str(5), styles=dict(background=rcolor()), width=1000, height=100)
)
Okay
pn.Column
/pn.Row
will overflow if the content is too long/wide.
rcolor = lambda: "#%06x" % random.randint(0, 0xFFFFFF)
pn.Row(
pn.pane.HTML(str(5), styles=dict(background=rcolor()), width=1000, height=100),
pn.pane.HTML(str(5), styles=dict(background=rcolor()), width=1000, height=100)
)
Reuse objects for efficiency
Good
Imagine Panel components as placeholders and use them as such, rather than re-creating them on update.
def randomize(event):
df_pane.object = pd.DataFrame(np.random.randn(10, 3), columns=list("ABC"))
button = pn.widgets.Button(name="Compute", on_click=randomize)
df_pane = pn.pane.DataFrame()
button.param.trigger("clicks") # initialize
pn.Column(button, df_pane)
Okay
If your callback returns a Panel object rather than the underlying object being displayed, you'll end up instantiating the pn.pane.DataFrame
on every click (which is typically slower and will often have distracting flickering).
def randomize(clicks):
return pn.pane.DataFrame(pd.DataFrame(np.random.randn(10, 3), columns=list("ABC")))
button = pn.widgets.Button(name="Compute")
df_pane = pn.bind(randomize, button.param.clicks)
button.param.trigger("clicks") # initialize
pn.Column(button, df_pane)