Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
holoviz
GitHub Repository: holoviz/panel
Path: blob/main/examples/gallery/portfolio_analyzer.ipynb
2011 views
Kernel: Unknown Kernel

The Portfolio Analysis App demonstrates the powerful Tabulator table that ships with Panel.

This app is heavily inspired by the Dash AG Grid App here. Having both enables you to compare pros and cons of Panel w. Tabulator versus Dash w. AG Grid.

import pandas as pd import plotly.express as px import plotly.graph_objects as go import panel as pn pn.extension('plotly', 'tabulator')
ACCENT = "#BB2649" RED = "#D94467" GREEN = "#5AD534" LINK_SVG = """ <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-arrow-up-right-square" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M15 2a1 1 0 0 0-1-1H2a1 1 0 0 0-1 1v12a1 1 0 0 0 1 1h12a1 1 0 0 0 1-1V2zM0 2a2 2 0 0 1 2-2h12a2 2 0 0 1 2 2v12a2 2 0 0 1-2 2H2a2 2 0 0 1-2-2V2zm5.854 8.803a.5.5 0 1 1-.708-.707L9.243 6H6.475a.5.5 0 1 1 0-1h3.975a.5.5 0 0 1 .5.5v3.975a.5.5 0 1 1-1 0V6.707l-4.096 4.096z"/> </svg> """ CSV_URL = "https://datasets.holoviz.org/equities/v1/equities.csv"

Lets define our list of equities

EQUITIES = { "AAPL": "Apple", "MSFT": "Microsoft", "AMZN": "Amazon", "GOOGL": "Alphabet", "TSLA": "Tesla", "BRK-B": "Berkshire Hathaway", "UNH": "United Health Group", "JNJ": "Johnson & Johnson", } EQUITY_LIST = tuple(EQUITIES.keys())

Extract the data

We would be using caching (pn.cache) to improve the performance of the app if we where loading data from a live data source like yfinance.

@pn.cache(ttl=600) def get_historical_data(tickers=EQUITY_LIST, period="2y"): """Downloads the historical data from Yahoo Finance""" df = pd.read_csv(CSV_URL, index_col=[0, 1], parse_dates=['Date']) return df historical_data = get_historical_data() historical_data.head(3).round(2)

Transform the data

Let us calculate the summary_data to show in the Table.

def last_close(ticker, data=historical_data): """Returns the last close pricefor the given ticker""" return data.loc[ticker]["Close"].iloc[-1] last_close("AAPL")
summary_data_dict = { "ticker": EQUITY_LIST, "company": EQUITIES.values(), "info": [ f"""<a href='https://finance.yahoo.com/quote/{ticker}' target='_blank'> <div title='Open in Yahoo'>{LINK_SVG}</div></a>""" for ticker in EQUITIES ], "quantity": [75, 40, 100, 50, 40, 60, 20, 40], "price": [last_close(ticker) for ticker in EQUITIES], "value": None, "action": ["buy", "sell", "hold", "hold", "hold", "hold", "hold", "hold"], "notes": ["" for i in range(8)], } summary_data = pd.DataFrame(summary_data_dict) def get_value_series(data=summary_data): """Returns the quantity * price series""" return data["quantity"] * data["price"] summary_data["value"] = get_value_series() summary_data.head(2)

Define the Summary Table

We define the configuration of the Tabulator below.

titles = { "ticker": "Stock Ticker", "company": "Company", "info": "Info", "quantity": "Shares", "price": "Last Close Price", "value": "Market Value", "action": "Action", "notes": "Notes", } frozen_columns = ["ticker", "company"] editors = { "ticker": None, "company": None, "quantity": {"type": "number", "min": 0, "step": 1}, "price": None, "value": None, "action": { "type": "list", "values": {"buy": "buy", "sell": "sell", "hold": "hold"}, }, "notes": { "type": "textarea", "elementAttributes": {"maxlength": "100"}, "selectContents": True, "verticalNavigation": "editor", "shiftEnterSubmit": True, }, "info": None, } widths = {"notes": 400} formatters = { "price": {"type": "money", "decimal": ".", "thousand": ",", "precision": 2}, "value": {"type": "money", "decimal": ".", "thousand": ",", "precision": 0}, "info": {"type": "html", "field": "html"}, } text_align = { "price": "right", "value": "right", "action": "center", "info": "center", } base_configuration = { "clipboard": "copy" }

Here we define the summary_table widget.

summary_table = pn.widgets.Tabulator( summary_data, editors=editors, formatters=formatters, frozen_columns=frozen_columns, layout="fit_data_table", selectable=1, show_index=False, text_align=text_align, titles=titles, widths=widths, configuration=base_configuration, ) summary_table

Now lets style the table using the Pandas styler api.

def style_of_action_cell(value, colors={'buy': GREEN, 'sell': RED}): """Returns the css to apply to an 'action' cell depending on the val""" return f'color: {colors[value]}' if value in colors else '' summary_table.style.map(style_of_action_cell, subset=["action"]).set_properties( **{"background-color": "#444"}, subset=["quantity"] )

For later we also need a function to handle when a user edits a cell in the table

patches = pn.widgets.IntInput(description="Used to raise an event when a cell value has changed") def handle_cell_edit(event, table=summary_table): """Updates the `value` cell when the `quantity` cell is updated""" row = event.row column = event.column if column == "quantity": quantity = event.value price = summary_table.value.loc[row, "price"] value = quantity * price table.patch({"value": [(row, value)]}) patches.value +=1

Define the plots

def candlestick(selection=[], data=summary_data): """Returns a candlestick plot""" if not selection: ticker = "AAPL" company = "Apple" else: index = selection[0] ticker = data.loc[index, "ticker"] company = data.loc[index, "company"] dff_ticker_hist = historical_data.loc[ticker].reset_index() dff_ticker_hist["Date"] = pd.to_datetime(dff_ticker_hist["Date"]) fig = go.Figure( go.Candlestick( x=dff_ticker_hist["Date"], open=dff_ticker_hist["Open"], high=dff_ticker_hist["High"], low=dff_ticker_hist["Low"], close=dff_ticker_hist["Close"], ) ) fig.update_layout( title_text=f"{ticker} {company} Daily Price", template="plotly_dark", autosize=True, ) return fig pn.pane.Plotly(candlestick())
def portfolio_distribution(patches=0): """Returns the distribution of the portfolio""" data = summary_table.value portfolio_total = data["value"].sum() fig = px.pie( data, values="value", names="ticker", hole=0.3, title=f"Portfolio Total $ {portfolio_total:,.0f}", template="plotly_dark", ) fig.layout.autosize = True return fig pn.pane.Plotly(portfolio_distribution())

Bind the widgets and functions

We want the candlestick plot to depend on the selection in summary_table

candlestick = pn.bind(candlestick, selection=summary_table.param.selection)

We want the portfolio_distribution to be updated when ever a cell value changes in the table

summary_table.on_edit(handle_cell_edit) portfolio_distribution = pn.bind(portfolio_distribution, patches=patches)

Test the app

pn.Column( pn.Row( pn.pane.Plotly(candlestick), pn.pane.Plotly(portfolio_distribution) ), summary_table, height=600 )

Layout the app in a nice template

We will use the FastGridTemplate which provides a nice dashboard layout with Panels you can resize and move around interactively.

template = pn.template.FastGridTemplate( title="Portfolio Analysis", accent_base_color=ACCENT, header_background=ACCENT, prevent_collision=True, save_layout=True, theme_toggle=False, theme='dark', row_height=160 )

Lets add the plots and table to the template

template.main[0:3, 0:8] = pn.pane.Plotly(candlestick) template.main[0:3, 8:12] = pn.pane.Plotly(portfolio_distribution) template.main[3:5, :] = summary_table

The template does not display in a notebook so we only output it when in a server context.

if pn.state.served: template.servable()