Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
holoviz
GitHub Repository: holoviz/panel
Path: blob/main/examples/gallery/streaming_videostream.ipynb
2011 views
Kernel: Unknown Kernel

Streaming Video: Live video streams made easy

In this example we will demonstrate how to develop a general tool to transform live image streams from the users web cam. We will be using Panels VideoStream widget to record and stream the images.

We will also show how to apply blur, grayscale, sobel and face recognition models to the video stream.

Imports and Settings

Among other things we will be using numpy, PIL and scikit-image to work with the images.

import base64 import io import time import numpy as np import param import PIL import skimage from PIL import Image, ImageFilter from skimage import data, filters from skimage.color.adapt_rgb import adapt_rgb, each_channel from skimage.draw import rectangle from skimage.exposure import rescale_intensity from skimage.feature import Cascade import panel as pn pn.extension(design='material', sizing_mode="stretch_width")

We define the height and width of the images to transform. Smaller is faster. We also define the timeout, i.e. how often the videostream takes and streams a new image.

HEIGHT = 500 # pixels WIDTH = 500 # pixels TIMEOUT = 500 # milliseconds

Base Image Models

We will need to define some base image models components. The base models are custom Panel components that inherit from Panels Viewer class.

The base models makes it easy to later turn image to image algorithms into interactive UIs like the FaceDetectionModel shown in the image just below.

Please note we restrict our selves to working with .jpg images. The VideoStream widget also support .png images. But .png images are much bigger and slower to work with.

class ImageModel(pn.viewable.Viewer): """Base class for image models.""" def __init__(self, **params): super().__init__(**params) with param.edit_constant(self): self.name = self.__class__.name.replace("Model", "") self.view = self.create_view() def __panel__(self): return self.view def apply(self, image: str, height: int = HEIGHT, width: int = WIDTH) -> str: """Transforms a base64 encoded jpg image to a base64 encoded jpg BytesIO object""" raise NotImplementedError() def create_view(self): """Creates a view of the parameters of the transform to enable the user to configure them""" return pn.Param(self, name=self.name) def transform(self, image): """Transforms the image""" raise NotImplementedError()

Lets define a base model for working with PIL images

class PILImageModel(ImageModel): """Base class for PIL image models""" @staticmethod def to_pil_img(value: str, height=HEIGHT, width=WIDTH): """Converts a base64 jpeg image string to a PIL.Image""" encoded_data = value.split(",")[1] base64_decoded = base64.b64decode(encoded_data) image = Image.open(io.BytesIO(base64_decoded)) image.draft("RGB", (height, width)) return image @staticmethod def from_pil_img(image: Image): """Converts a PIL.Image to a base64 encoded JPG BytesIO object""" buff = io.BytesIO() image.save(buff, format="JPEG") return buff def apply(self, image: str, height: int = HEIGHT, width: int = WIDTH) -> io.BytesIO: pil_img = self.to_pil_img(image, height=height, width=width) transformed_image = self.transform(pil_img) return self.from_pil_img(transformed_image) def transform(self, image: PIL.Image) -> PIL.Image: """Transforms the PIL.Image image""" raise NotImplementedError()

Lets define a base model for working with Numpy images.

class NumpyImageModel(ImageModel): """Base class for np.ndarray image models""" @staticmethod def to_np_ndarray(image: str, height=HEIGHT, width=WIDTH) -> np.ndarray: """Converts a base64 encoded jpeg string to a np.ndarray""" pil_img = PILImageModel.to_pil_img(image, height=height, width=width) return np.array(pil_img) @staticmethod def from_np_ndarray(image: np.ndarray) -> io.BytesIO: """Converts np.ndarray jpeg image to a jpeg BytesIO instance""" if image.dtype == np.dtype("float64"): image = (image * 255).astype(np.uint8) pil_img = PIL.Image.fromarray(image) return PILImageModel.from_pil_img(pil_img) def apply(self, image: str, height: int = HEIGHT, width: int = WIDTH) -> io.BytesIO: np_array = self.to_np_ndarray(image, height=height, width=width) transformed_image = self.transform(np_array) return self.from_np_ndarray(transformed_image) def transform(self, image: np.ndarray) -> np.ndarray: """Transforms the np.array image""" raise NotImplementedError()

Timer

Lets define a timer component to visualize the stats of the live videostream and the image transformations

class Timer(pn.viewable.Viewer): """Helper Component used to show duration trends""" _trends = param.Dict() def __init__(self, **params): super().__init__() self.last_updates = {} self._trends = {} self._layout = pn.Row(**params) def time_it(self, name, func, *args, **kwargs): """Measures the duration of the execution of the func function and reports it under the name specified""" start = time.time() result = func(*args, **kwargs) end = time.time() duration = round(end - start, 2) self._report(name=name, duration=duration) return result def inc_it(self, name): """Measures the duration since the last time `inc_it` was called and reports it under the specified name""" start = self.last_updates.get(name, time.time()) end = time.time() duration = round(end - start, 2) self._report(name=name, duration=duration) self.last_updates[name] = end def _report(self, name, duration): if not name in self._trends: self._trends[name] = pn.indicators.Trend( name=name, data={"x": [1], "y": [duration]}, height=100, width=150, sizing_mode="fixed", ) self.param.trigger("_trends") else: trend = self._trends[name] next_x = max(trend.data["x"]) + 1 trend.stream({"x": [next_x], "y": [duration]}, rollover=10) @param.depends("_trends") def _panel(self): self._layout[:] = list(self._trends.values()) return self._layout def __panel__(self): return pn.panel(self._panel)

VideoStreamInterface

The VideoStreamInterface will be putting things together in a nice UI.

Lets define a helper function first

def to_instance(value, **params): """Converts the value to an instance Args: value: A param.Parameterized class or instance Returns: An instance of the param.Parameterized class """ if isinstance(value, param.Parameterized): value.param.update(**params) return value return value(**params)

The VideoStreamInterface will take a list of ImageModels. The user can the select and apply the models to the images from the VideoStream.

class VideoStreamInterface(pn.viewable.Viewer): """An easy to use interface for a VideoStream and a set of transforms""" video_stream = param.ClassSelector( class_=pn.widgets.VideoStream, constant=True, doc="The source VideoStream" ) height = param.Integer( default=HEIGHT, bounds=(10, 2000), step=10, doc="""The height of the image converted and shown""", ) width = param.Integer( default=WIDTH, bounds=(10, 2000), step=10, doc="""The width of the image converted and shown""", ) model = param.Selector(doc="The currently selected model") def __init__( self, models, timeout=TIMEOUT, paused=False, **params, ): super().__init__( video_stream=pn.widgets.VideoStream( name="Video Stream", timeout=timeout, paused=paused, height=0, width=0, visible=False, format="jpeg", ), **params, ) self.image = pn.pane.JPG( height=self.height, width=self.width, sizing_mode="fixed" ) self._updating = False models = [to_instance(model) for model in models] self.param.model.objects = models self.model = models[0] self.timer = Timer(sizing_mode="stretch_width") self.settings = self._create_settings() self._panel = self._create_panel() def _create_settings(self): return pn.Column( pn.Param( self.video_stream, parameters=["timeout", "paused"], widgets={ "timeout": { "widget_type": pn.widgets.IntSlider, "start": 10, "end": 2000, "step": 10, } }, ), self.timer, pn.Param(self, parameters=["height", "width"], name="Image"), pn.Param( self, parameters=["model"], expand_button=False, expand=False, widgets={ "model": { "widget_type": pn.widgets.RadioButtonGroup, "orientation": "vertical", "button_type": "primary", "button_style": "outline" } }, name="Model", ), self._get_transform, ) def _create_panel(self): return pn.Row( self.video_stream, pn.layout.HSpacer(), self.image, pn.layout.HSpacer(), sizing_mode="stretch_width", align="center", ) @param.depends("height", "width", watch=True) def _update_height_width(self): self.image.height = self.height self.image.width = self.width @param.depends("model") def _get_transform(self): # Hack: returning self.transform stops working after browsing the transforms for a while return self.model.view def __panel__(self): return self._panel @param.depends("video_stream.value", watch=True) def _handle_stream(self): if self._updating: return self._updating = True if self.model and self.video_stream.value: value = self.video_stream.value try: image = self.timer.time_it( name="Model", func=self.model.apply, image=value, height=self.height, width=self.width, ) self.image.object = image except PIL.UnidentifiedImageError: print("unidentified image") self.timer.inc_it("Last Update") self._updating = False

Custom Image Models

We will now make specific image to image algorithms interactive.

Let us start with the Gaussian Blur algorithm.

class GaussianBlurModel(PILImageModel): """Gaussian Blur Model https://pillow.readthedocs.io/en/stable/reference/ImageFilter.html#PIL.ImageFilter.GaussianBlur """ radius = param.Integer(default=2, bounds=(0, 10)) def transform(self, image: Image): return image.filter(ImageFilter.GaussianBlur(radius=self.radius))

Lets implement a Grayscale algorithm.

class GrayscaleModel(NumpyImageModel): """GrayScale Model https://scikit-image.org/docs/0.15.x/auto_examples/color_exposure/plot_rgb_to_gray.html """ def transform(self, image: np.ndarray): grayscale = skimage.color.rgb2gray(image[:, :, :3]) return skimage.color.gray2rgb(grayscale)

Lets implement the Sobel algorithm.

class SobelModel(NumpyImageModel): """Sobel Model https://scikit-image.org/docs/0.15.x/auto_examples/color_exposure/plot_adapt_rgb.html """ def transform(self, image): @adapt_rgb(each_channel) def sobel_each(image): return filters.sobel(image) return rescale_intensity(1 - sobel_each(image))

Lets implement the face detection model of scikit-image.

@pn.cache() def get_detector(): """Returns the Cascade detector""" trained_file = data.lbp_frontal_face_cascade_filename() return Cascade(trained_file)
class FaceDetectionModel(NumpyImageModel): """Face detection using a cascade classifier. https://scikit-image.org/docs/0.15.x/auto_examples/applications/plot_face_detection.html """ scale_factor = param.Number(default=1.4, bounds=(1.0, 2.0), step=0.1) step_ratio = param.Integer(default=1, bounds=(1, 10)) size_x = param.Range(default=(60, 322), bounds=(10, 500)) size_y = param.Range(default=(60, 322), bounds=(10, 500)) def transform(self, image): detector = get_detector() detected = detector.detect_multi_scale( img=image, scale_factor=self.scale_factor, step_ratio=self.step_ratio, min_size=(self.size_x[0], self.size_y[0]), max_size=(self.size_x[1], self.size_y[1]), ) for patch in detected: rrr, ccc = rectangle( start=(patch["r"], patch["c"]), extent=(patch["height"], patch["width"]), shape=image.shape[:2], ) image[rrr, ccc, 0] = 200 return image

Please note that these models are just examples. You can also implement your own models using Scikit-Image, Pytorch, Tensorflow etc and use the VideoStreamInterface to work interactively with them.

Its alive!

Lets define an instance of the VideoStreamInterface

component = VideoStreamInterface( models=[ GaussianBlurModel, GrayscaleModel, SobelModel, FaceDetectionModel, ] ) pn.Row(pn.Row(component.settings, max_width=400), component)

Wrap it in a template

What makes Panel unique is that our components work very well in both the notebook and as standalone data apps.

We can wrap the component in the nicely styled FastListTemplate to make it ready for production.

pn.template.FastListTemplate( site="Panel", title="VideoStream Interface", sidebar=[component.settings], main=[component], ).servable(); # We add ; to not show the template in the notebook as it does not display well.

Serve it as a server side app

It is now possible to serve the live app via the command panel serve streaming_videostream.ipynb. The app is the available at http://localhost:5006/streaming_videostream.

Serve it as a client side app

You can also panel convert this app to web assembly for even better performance.

First you will need to create a requirements.txt file with the following content

panel numpy scikit-image

Then you can