CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
hrydgard

CoCalc provides the best real-time collaborative environment for Jupyter Notebooks, LaTeX documents, and SageMath, scalable from individual users to large groups and classes!

GitHub Repository: hrydgard/ppsspp
Path: blob/master/ext/basis_universal/basisu_transcoder_internal.h
Views: 1401
1
// basisu_transcoder_internal.h - Universal texture format transcoder library.
2
// Copyright (C) 2019-2021 Binomial LLC. All Rights Reserved.
3
//
4
// Important: If compiling with gcc, be sure strict aliasing is disabled: -fno-strict-aliasing
5
//
6
// Licensed under the Apache License, Version 2.0 (the "License");
7
// you may not use this file except in compliance with the License.
8
// You may obtain a copy of the License at
9
//
10
// http://www.apache.org/licenses/LICENSE-2.0
11
//
12
// Unless required by applicable law or agreed to in writing, software
13
// distributed under the License is distributed on an "AS IS" BASIS,
14
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
// See the License for the specific language governing permissions and
16
// limitations under the License.
17
#pragma once
18
19
#ifdef _MSC_VER
20
#pragma warning (disable: 4127) // conditional expression is constant
21
#endif
22
23
#define BASISD_LIB_VERSION 116
24
#define BASISD_VERSION_STRING "01.16"
25
26
#ifdef _DEBUG
27
#define BASISD_BUILD_DEBUG
28
#else
29
#define BASISD_BUILD_RELEASE
30
#endif
31
32
#include "basisu.h"
33
34
#define BASISD_znew (z = 36969 * (z & 65535) + (z >> 16))
35
36
namespace basisu
37
{
38
extern bool g_debug_printf;
39
}
40
41
namespace basist
42
{
43
// Low-level formats directly supported by the transcoder (other supported texture formats are combinations of these low-level block formats).
44
// You probably don't care about these enum's unless you are going pretty low-level and calling the transcoder to decode individual slices.
45
enum class block_format
46
{
47
cETC1, // ETC1S RGB
48
cETC2_RGBA, // full ETC2 EAC RGBA8 block
49
cBC1, // DXT1 RGB
50
cBC3, // BC4 block followed by a four color BC1 block
51
cBC4, // DXT5A (alpha block only)
52
cBC5, // two BC4 blocks
53
cPVRTC1_4_RGB, // opaque-only PVRTC1 4bpp
54
cPVRTC1_4_RGBA, // PVRTC1 4bpp RGBA
55
cBC7, // Full BC7 block, any mode
56
cBC7_M5_COLOR, // RGB BC7 mode 5 color (writes an opaque mode 5 block)
57
cBC7_M5_ALPHA, // alpha portion of BC7 mode 5 (cBC7_M5_COLOR output data must have been written to the output buffer first to set the mode/rot fields etc.)
58
cETC2_EAC_A8, // alpha block of ETC2 EAC (first 8 bytes of the 16-bit ETC2 EAC RGBA format)
59
cASTC_4x4, // ASTC 4x4 (either color-only or color+alpha). Note that the transcoder always currently assumes sRGB is not enabled when outputting ASTC
60
// data. If you use a sRGB ASTC format you'll get ~1 LSB of additional error, because of the different way ASTC decoders scale 8-bit endpoints to 16-bits during unpacking.
61
62
cATC_RGB,
63
cATC_RGBA_INTERPOLATED_ALPHA,
64
cFXT1_RGB, // Opaque-only, has oddball 8x4 pixel block size
65
66
cPVRTC2_4_RGB,
67
cPVRTC2_4_RGBA,
68
69
cETC2_EAC_R11,
70
cETC2_EAC_RG11,
71
72
cIndices, // Used internally: Write 16-bit endpoint and selector indices directly to output (output block must be at least 32-bits)
73
74
cRGB32, // Writes RGB components to 32bpp output pixels
75
cRGBA32, // Writes RGB255 components to 32bpp output pixels
76
cA32, // Writes alpha component to 32bpp output pixels
77
78
cRGB565,
79
cBGR565,
80
81
cRGBA4444_COLOR,
82
cRGBA4444_ALPHA,
83
cRGBA4444_COLOR_OPAQUE,
84
cRGBA4444,
85
86
cUASTC_4x4,
87
88
cTotalBlockFormats
89
};
90
91
const int COLOR5_PAL0_PREV_HI = 9, COLOR5_PAL0_DELTA_LO = -9, COLOR5_PAL0_DELTA_HI = 31;
92
const int COLOR5_PAL1_PREV_HI = 21, COLOR5_PAL1_DELTA_LO = -21, COLOR5_PAL1_DELTA_HI = 21;
93
const int COLOR5_PAL2_PREV_HI = 31, COLOR5_PAL2_DELTA_LO = -31, COLOR5_PAL2_DELTA_HI = 9;
94
const int COLOR5_PAL_MIN_DELTA_B_RUNLEN = 3, COLOR5_PAL_DELTA_5_RUNLEN_VLC_BITS = 3;
95
96
const uint32_t ENDPOINT_PRED_TOTAL_SYMBOLS = (4 * 4 * 4 * 4) + 1;
97
const uint32_t ENDPOINT_PRED_REPEAT_LAST_SYMBOL = ENDPOINT_PRED_TOTAL_SYMBOLS - 1;
98
const uint32_t ENDPOINT_PRED_MIN_REPEAT_COUNT = 3;
99
const uint32_t ENDPOINT_PRED_COUNT_VLC_BITS = 4;
100
101
const uint32_t NUM_ENDPOINT_PREDS = 3;// BASISU_ARRAY_SIZE(g_endpoint_preds);
102
const uint32_t CR_ENDPOINT_PRED_INDEX = NUM_ENDPOINT_PREDS - 1;
103
const uint32_t NO_ENDPOINT_PRED_INDEX = 3;//NUM_ENDPOINT_PREDS;
104
const uint32_t MAX_SELECTOR_HISTORY_BUF_SIZE = 64;
105
const uint32_t SELECTOR_HISTORY_BUF_RLE_COUNT_THRESH = 3;
106
const uint32_t SELECTOR_HISTORY_BUF_RLE_COUNT_BITS = 6;
107
const uint32_t SELECTOR_HISTORY_BUF_RLE_COUNT_TOTAL = (1 << SELECTOR_HISTORY_BUF_RLE_COUNT_BITS);
108
109
uint16_t crc16(const void *r, size_t size, uint16_t crc);
110
111
class huffman_decoding_table
112
{
113
friend class bitwise_decoder;
114
115
public:
116
huffman_decoding_table()
117
{
118
}
119
120
void clear()
121
{
122
basisu::clear_vector(m_code_sizes);
123
basisu::clear_vector(m_lookup);
124
basisu::clear_vector(m_tree);
125
}
126
127
bool init(uint32_t total_syms, const uint8_t *pCode_sizes, uint32_t fast_lookup_bits = basisu::cHuffmanFastLookupBits)
128
{
129
if (!total_syms)
130
{
131
clear();
132
return true;
133
}
134
135
m_code_sizes.resize(total_syms);
136
memcpy(&m_code_sizes[0], pCode_sizes, total_syms);
137
138
const uint32_t huffman_fast_lookup_size = 1 << fast_lookup_bits;
139
140
m_lookup.resize(0);
141
m_lookup.resize(huffman_fast_lookup_size);
142
143
m_tree.resize(0);
144
m_tree.resize(total_syms * 2);
145
146
uint32_t syms_using_codesize[basisu::cHuffmanMaxSupportedInternalCodeSize + 1];
147
basisu::clear_obj(syms_using_codesize);
148
for (uint32_t i = 0; i < total_syms; i++)
149
{
150
if (pCode_sizes[i] > basisu::cHuffmanMaxSupportedInternalCodeSize)
151
return false;
152
syms_using_codesize[pCode_sizes[i]]++;
153
}
154
155
uint32_t next_code[basisu::cHuffmanMaxSupportedInternalCodeSize + 1];
156
next_code[0] = next_code[1] = 0;
157
158
uint32_t used_syms = 0, total = 0;
159
for (uint32_t i = 1; i < basisu::cHuffmanMaxSupportedInternalCodeSize; i++)
160
{
161
used_syms += syms_using_codesize[i];
162
next_code[i + 1] = (total = ((total + syms_using_codesize[i]) << 1));
163
}
164
165
if (((1U << basisu::cHuffmanMaxSupportedInternalCodeSize) != total) && (used_syms != 1U))
166
return false;
167
168
for (int tree_next = -1, sym_index = 0; sym_index < (int)total_syms; ++sym_index)
169
{
170
uint32_t rev_code = 0, l, cur_code, code_size = pCode_sizes[sym_index];
171
if (!code_size)
172
continue;
173
174
cur_code = next_code[code_size]++;
175
176
for (l = code_size; l > 0; l--, cur_code >>= 1)
177
rev_code = (rev_code << 1) | (cur_code & 1);
178
179
if (code_size <= fast_lookup_bits)
180
{
181
uint32_t k = (code_size << 16) | sym_index;
182
while (rev_code < huffman_fast_lookup_size)
183
{
184
if (m_lookup[rev_code] != 0)
185
{
186
// Supplied codesizes can't create a valid prefix code.
187
return false;
188
}
189
190
m_lookup[rev_code] = k;
191
rev_code += (1 << code_size);
192
}
193
continue;
194
}
195
196
int tree_cur;
197
if (0 == (tree_cur = m_lookup[rev_code & (huffman_fast_lookup_size - 1)]))
198
{
199
const uint32_t idx = rev_code & (huffman_fast_lookup_size - 1);
200
if (m_lookup[idx] != 0)
201
{
202
// Supplied codesizes can't create a valid prefix code.
203
return false;
204
}
205
206
m_lookup[idx] = tree_next;
207
tree_cur = tree_next;
208
tree_next -= 2;
209
}
210
211
if (tree_cur >= 0)
212
{
213
// Supplied codesizes can't create a valid prefix code.
214
return false;
215
}
216
217
rev_code >>= (fast_lookup_bits - 1);
218
219
for (int j = code_size; j > ((int)fast_lookup_bits + 1); j--)
220
{
221
tree_cur -= ((rev_code >>= 1) & 1);
222
223
const int idx = -tree_cur - 1;
224
if (idx < 0)
225
return false;
226
else if (idx >= (int)m_tree.size())
227
m_tree.resize(idx + 1);
228
229
if (!m_tree[idx])
230
{
231
m_tree[idx] = (int16_t)tree_next;
232
tree_cur = tree_next;
233
tree_next -= 2;
234
}
235
else
236
{
237
tree_cur = m_tree[idx];
238
if (tree_cur >= 0)
239
{
240
// Supplied codesizes can't create a valid prefix code.
241
return false;
242
}
243
}
244
}
245
246
tree_cur -= ((rev_code >>= 1) & 1);
247
248
const int idx = -tree_cur - 1;
249
if (idx < 0)
250
return false;
251
else if (idx >= (int)m_tree.size())
252
m_tree.resize(idx + 1);
253
254
if (m_tree[idx] != 0)
255
{
256
// Supplied codesizes can't create a valid prefix code.
257
return false;
258
}
259
260
m_tree[idx] = (int16_t)sym_index;
261
}
262
263
return true;
264
}
265
266
const basisu::uint8_vec &get_code_sizes() const { return m_code_sizes; }
267
const basisu::int_vec get_lookup() const { return m_lookup; }
268
const basisu::int16_vec get_tree() const { return m_tree; }
269
270
bool is_valid() const { return m_code_sizes.size() > 0; }
271
272
private:
273
basisu::uint8_vec m_code_sizes;
274
basisu::int_vec m_lookup;
275
basisu::int16_vec m_tree;
276
};
277
278
class bitwise_decoder
279
{
280
public:
281
bitwise_decoder() :
282
m_buf_size(0),
283
m_pBuf(nullptr),
284
m_pBuf_start(nullptr),
285
m_pBuf_end(nullptr),
286
m_bit_buf(0),
287
m_bit_buf_size(0)
288
{
289
}
290
291
void clear()
292
{
293
m_buf_size = 0;
294
m_pBuf = nullptr;
295
m_pBuf_start = nullptr;
296
m_pBuf_end = nullptr;
297
m_bit_buf = 0;
298
m_bit_buf_size = 0;
299
}
300
301
bool init(const uint8_t *pBuf, uint32_t buf_size)
302
{
303
if ((!pBuf) && (buf_size))
304
return false;
305
306
m_buf_size = buf_size;
307
m_pBuf = pBuf;
308
m_pBuf_start = pBuf;
309
m_pBuf_end = pBuf + buf_size;
310
m_bit_buf = 0;
311
m_bit_buf_size = 0;
312
return true;
313
}
314
315
void stop()
316
{
317
}
318
319
inline uint32_t peek_bits(uint32_t num_bits)
320
{
321
if (!num_bits)
322
return 0;
323
324
assert(num_bits <= 25);
325
326
while (m_bit_buf_size < num_bits)
327
{
328
uint32_t c = 0;
329
if (m_pBuf < m_pBuf_end)
330
c = *m_pBuf++;
331
332
m_bit_buf |= (c << m_bit_buf_size);
333
m_bit_buf_size += 8;
334
assert(m_bit_buf_size <= 32);
335
}
336
337
return m_bit_buf & ((1 << num_bits) - 1);
338
}
339
340
void remove_bits(uint32_t num_bits)
341
{
342
assert(m_bit_buf_size >= num_bits);
343
344
m_bit_buf >>= num_bits;
345
m_bit_buf_size -= num_bits;
346
}
347
348
uint32_t get_bits(uint32_t num_bits)
349
{
350
if (num_bits > 25)
351
{
352
assert(num_bits <= 32);
353
354
const uint32_t bits0 = peek_bits(25);
355
m_bit_buf >>= 25;
356
m_bit_buf_size -= 25;
357
num_bits -= 25;
358
359
const uint32_t bits = peek_bits(num_bits);
360
m_bit_buf >>= num_bits;
361
m_bit_buf_size -= num_bits;
362
363
return bits0 | (bits << 25);
364
}
365
366
const uint32_t bits = peek_bits(num_bits);
367
368
m_bit_buf >>= num_bits;
369
m_bit_buf_size -= num_bits;
370
371
return bits;
372
}
373
374
uint32_t decode_truncated_binary(uint32_t n)
375
{
376
assert(n >= 2);
377
378
const uint32_t k = basisu::floor_log2i(n);
379
const uint32_t u = (1 << (k + 1)) - n;
380
381
uint32_t result = get_bits(k);
382
383
if (result >= u)
384
result = ((result << 1) | get_bits(1)) - u;
385
386
return result;
387
}
388
389
uint32_t decode_rice(uint32_t m)
390
{
391
assert(m);
392
393
uint32_t q = 0;
394
for (;;)
395
{
396
uint32_t k = peek_bits(16);
397
398
uint32_t l = 0;
399
while (k & 1)
400
{
401
l++;
402
k >>= 1;
403
}
404
405
q += l;
406
407
remove_bits(l);
408
409
if (l < 16)
410
break;
411
}
412
413
return (q << m) + (get_bits(m + 1) >> 1);
414
}
415
416
inline uint32_t decode_vlc(uint32_t chunk_bits)
417
{
418
assert(chunk_bits);
419
420
const uint32_t chunk_size = 1 << chunk_bits;
421
const uint32_t chunk_mask = chunk_size - 1;
422
423
uint32_t v = 0;
424
uint32_t ofs = 0;
425
426
for ( ; ; )
427
{
428
uint32_t s = get_bits(chunk_bits + 1);
429
v |= ((s & chunk_mask) << ofs);
430
ofs += chunk_bits;
431
432
if ((s & chunk_size) == 0)
433
break;
434
435
if (ofs >= 32)
436
{
437
assert(0);
438
break;
439
}
440
}
441
442
return v;
443
}
444
445
inline uint32_t decode_huffman(const huffman_decoding_table &ct, int fast_lookup_bits = basisu::cHuffmanFastLookupBits)
446
{
447
assert(ct.m_code_sizes.size());
448
449
const uint32_t huffman_fast_lookup_size = 1 << fast_lookup_bits;
450
451
while (m_bit_buf_size < 16)
452
{
453
uint32_t c = 0;
454
if (m_pBuf < m_pBuf_end)
455
c = *m_pBuf++;
456
457
m_bit_buf |= (c << m_bit_buf_size);
458
m_bit_buf_size += 8;
459
assert(m_bit_buf_size <= 32);
460
}
461
462
int code_len;
463
464
int sym;
465
if ((sym = ct.m_lookup[m_bit_buf & (huffman_fast_lookup_size - 1)]) >= 0)
466
{
467
code_len = sym >> 16;
468
sym &= 0xFFFF;
469
}
470
else
471
{
472
code_len = fast_lookup_bits;
473
do
474
{
475
sym = ct.m_tree[~sym + ((m_bit_buf >> code_len++) & 1)]; // ~sym = -sym - 1
476
} while (sym < 0);
477
}
478
479
m_bit_buf >>= code_len;
480
m_bit_buf_size -= code_len;
481
482
return sym;
483
}
484
485
bool read_huffman_table(huffman_decoding_table &ct)
486
{
487
ct.clear();
488
489
const uint32_t total_used_syms = get_bits(basisu::cHuffmanMaxSymsLog2);
490
491
if (!total_used_syms)
492
return true;
493
if (total_used_syms > basisu::cHuffmanMaxSyms)
494
return false;
495
496
uint8_t code_length_code_sizes[basisu::cHuffmanTotalCodelengthCodes];
497
basisu::clear_obj(code_length_code_sizes);
498
499
const uint32_t num_codelength_codes = get_bits(5);
500
if ((num_codelength_codes < 1) || (num_codelength_codes > basisu::cHuffmanTotalCodelengthCodes))
501
return false;
502
503
for (uint32_t i = 0; i < num_codelength_codes; i++)
504
code_length_code_sizes[basisu::g_huffman_sorted_codelength_codes[i]] = static_cast<uint8_t>(get_bits(3));
505
506
huffman_decoding_table code_length_table;
507
if (!code_length_table.init(basisu::cHuffmanTotalCodelengthCodes, code_length_code_sizes))
508
return false;
509
510
if (!code_length_table.is_valid())
511
return false;
512
513
basisu::uint8_vec code_sizes(total_used_syms);
514
515
uint32_t cur = 0;
516
while (cur < total_used_syms)
517
{
518
int c = decode_huffman(code_length_table);
519
520
if (c <= 16)
521
code_sizes[cur++] = static_cast<uint8_t>(c);
522
else if (c == basisu::cHuffmanSmallZeroRunCode)
523
cur += get_bits(basisu::cHuffmanSmallZeroRunExtraBits) + basisu::cHuffmanSmallZeroRunSizeMin;
524
else if (c == basisu::cHuffmanBigZeroRunCode)
525
cur += get_bits(basisu::cHuffmanBigZeroRunExtraBits) + basisu::cHuffmanBigZeroRunSizeMin;
526
else
527
{
528
if (!cur)
529
return false;
530
531
uint32_t l;
532
if (c == basisu::cHuffmanSmallRepeatCode)
533
l = get_bits(basisu::cHuffmanSmallRepeatExtraBits) + basisu::cHuffmanSmallRepeatSizeMin;
534
else
535
l = get_bits(basisu::cHuffmanBigRepeatExtraBits) + basisu::cHuffmanBigRepeatSizeMin;
536
537
const uint8_t prev = code_sizes[cur - 1];
538
if (prev == 0)
539
return false;
540
do
541
{
542
if (cur >= total_used_syms)
543
return false;
544
code_sizes[cur++] = prev;
545
} while (--l > 0);
546
}
547
}
548
549
if (cur != total_used_syms)
550
return false;
551
552
return ct.init(total_used_syms, &code_sizes[0]);
553
}
554
555
private:
556
uint32_t m_buf_size;
557
const uint8_t *m_pBuf;
558
const uint8_t *m_pBuf_start;
559
const uint8_t *m_pBuf_end;
560
561
uint32_t m_bit_buf;
562
uint32_t m_bit_buf_size;
563
};
564
565
inline uint32_t basisd_rand(uint32_t seed)
566
{
567
if (!seed)
568
seed++;
569
uint32_t z = seed;
570
BASISD_znew;
571
return z;
572
}
573
574
// Returns random number in [0,limit). Max limit is 0xFFFF.
575
inline uint32_t basisd_urand(uint32_t& seed, uint32_t limit)
576
{
577
seed = basisd_rand(seed);
578
return (((seed ^ (seed >> 16)) & 0xFFFF) * limit) >> 16;
579
}
580
581
class approx_move_to_front
582
{
583
public:
584
approx_move_to_front(uint32_t n)
585
{
586
init(n);
587
}
588
589
void init(uint32_t n)
590
{
591
m_values.resize(n);
592
m_rover = n / 2;
593
}
594
595
const basisu::int_vec& get_values() const { return m_values; }
596
basisu::int_vec& get_values() { return m_values; }
597
598
uint32_t size() const { return (uint32_t)m_values.size(); }
599
600
const int& operator[] (uint32_t index) const { return m_values[index]; }
601
int operator[] (uint32_t index) { return m_values[index]; }
602
603
void add(int new_value)
604
{
605
m_values[m_rover++] = new_value;
606
if (m_rover == m_values.size())
607
m_rover = (uint32_t)m_values.size() / 2;
608
}
609
610
void use(uint32_t index)
611
{
612
if (index)
613
{
614
//std::swap(m_values[index / 2], m_values[index]);
615
int x = m_values[index / 2];
616
int y = m_values[index];
617
m_values[index / 2] = y;
618
m_values[index] = x;
619
}
620
}
621
622
// returns -1 if not found
623
int find(int value) const
624
{
625
for (uint32_t i = 0; i < m_values.size(); i++)
626
if (m_values[i] == value)
627
return i;
628
return -1;
629
}
630
631
void reset()
632
{
633
const uint32_t n = (uint32_t)m_values.size();
634
635
m_values.clear();
636
637
init(n);
638
}
639
640
private:
641
basisu::int_vec m_values;
642
uint32_t m_rover;
643
};
644
645
struct decoder_etc_block;
646
647
inline uint8_t clamp255(int32_t i)
648
{
649
return (uint8_t)((i & 0xFFFFFF00U) ? (~(i >> 31)) : i);
650
}
651
652
enum eNoClamp
653
{
654
cNoClamp = 0
655
};
656
657
struct color32
658
{
659
union
660
{
661
struct
662
{
663
uint8_t r;
664
uint8_t g;
665
uint8_t b;
666
uint8_t a;
667
};
668
669
uint8_t c[4];
670
671
uint32_t m;
672
};
673
674
color32() { }
675
676
color32(uint32_t vr, uint32_t vg, uint32_t vb, uint32_t va) { set(vr, vg, vb, va); }
677
color32(eNoClamp unused, uint32_t vr, uint32_t vg, uint32_t vb, uint32_t va) { (void)unused; set_noclamp_rgba(vr, vg, vb, va); }
678
679
void set(uint32_t vr, uint32_t vg, uint32_t vb, uint32_t va) { c[0] = static_cast<uint8_t>(vr); c[1] = static_cast<uint8_t>(vg); c[2] = static_cast<uint8_t>(vb); c[3] = static_cast<uint8_t>(va); }
680
681
void set_noclamp_rgb(uint32_t vr, uint32_t vg, uint32_t vb) { c[0] = static_cast<uint8_t>(vr); c[1] = static_cast<uint8_t>(vg); c[2] = static_cast<uint8_t>(vb); }
682
void set_noclamp_rgba(uint32_t vr, uint32_t vg, uint32_t vb, uint32_t va) { set(vr, vg, vb, va); }
683
684
void set_clamped(int vr, int vg, int vb, int va) { c[0] = clamp255(vr); c[1] = clamp255(vg); c[2] = clamp255(vb); c[3] = clamp255(va); }
685
686
uint8_t operator[] (uint32_t idx) const { assert(idx < 4); return c[idx]; }
687
uint8_t &operator[] (uint32_t idx) { assert(idx < 4); return c[idx]; }
688
689
bool operator== (const color32&rhs) const { return m == rhs.m; }
690
691
static color32 comp_min(const color32& a, const color32& b) { return color32(cNoClamp, basisu::minimum(a[0], b[0]), basisu::minimum(a[1], b[1]), basisu::minimum(a[2], b[2]), basisu::minimum(a[3], b[3])); }
692
static color32 comp_max(const color32& a, const color32& b) { return color32(cNoClamp, basisu::maximum(a[0], b[0]), basisu::maximum(a[1], b[1]), basisu::maximum(a[2], b[2]), basisu::maximum(a[3], b[3])); }
693
};
694
695
struct endpoint
696
{
697
color32 m_color5;
698
uint8_t m_inten5;
699
bool operator== (const endpoint& rhs) const
700
{
701
return (m_color5.r == rhs.m_color5.r) && (m_color5.g == rhs.m_color5.g) && (m_color5.b == rhs.m_color5.b) && (m_inten5 == rhs.m_inten5);
702
}
703
bool operator!= (const endpoint& rhs) const { return !(*this == rhs); }
704
};
705
706
struct selector
707
{
708
// Plain selectors (2-bits per value)
709
uint8_t m_selectors[4];
710
711
// ETC1 selectors
712
uint8_t m_bytes[4];
713
714
uint8_t m_lo_selector, m_hi_selector;
715
uint8_t m_num_unique_selectors;
716
bool operator== (const selector& rhs) const
717
{
718
return (m_selectors[0] == rhs.m_selectors[0]) &&
719
(m_selectors[1] == rhs.m_selectors[1]) &&
720
(m_selectors[2] == rhs.m_selectors[2]) &&
721
(m_selectors[3] == rhs.m_selectors[3]);
722
}
723
bool operator!= (const selector& rhs) const
724
{
725
return !(*this == rhs);
726
}
727
728
void init_flags()
729
{
730
uint32_t hist[4] = { 0, 0, 0, 0 };
731
for (uint32_t y = 0; y < 4; y++)
732
{
733
for (uint32_t x = 0; x < 4; x++)
734
{
735
uint32_t s = get_selector(x, y);
736
hist[s]++;
737
}
738
}
739
740
m_lo_selector = 3;
741
m_hi_selector = 0;
742
m_num_unique_selectors = 0;
743
744
for (uint32_t i = 0; i < 4; i++)
745
{
746
if (hist[i])
747
{
748
m_num_unique_selectors++;
749
if (i < m_lo_selector) m_lo_selector = static_cast<uint8_t>(i);
750
if (i > m_hi_selector) m_hi_selector = static_cast<uint8_t>(i);
751
}
752
}
753
}
754
755
// Returned selector value ranges from 0-3 and is a direct index into g_etc1_inten_tables.
756
inline uint32_t get_selector(uint32_t x, uint32_t y) const
757
{
758
assert((x < 4) && (y < 4));
759
return (m_selectors[y] >> (x * 2)) & 3;
760
}
761
762
void set_selector(uint32_t x, uint32_t y, uint32_t val)
763
{
764
static const uint8_t s_selector_index_to_etc1[4] = { 3, 2, 0, 1 };
765
766
assert((x | y | val) < 4);
767
768
m_selectors[y] &= ~(3 << (x * 2));
769
m_selectors[y] |= (val << (x * 2));
770
771
const uint32_t etc1_bit_index = x * 4 + y;
772
773
uint8_t *p = &m_bytes[3 - (etc1_bit_index >> 3)];
774
775
const uint32_t byte_bit_ofs = etc1_bit_index & 7;
776
const uint32_t mask = 1 << byte_bit_ofs;
777
778
const uint32_t etc1_val = s_selector_index_to_etc1[val];
779
780
const uint32_t lsb = etc1_val & 1;
781
const uint32_t msb = etc1_val >> 1;
782
783
p[0] &= ~mask;
784
p[0] |= (lsb << byte_bit_ofs);
785
786
p[-2] &= ~mask;
787
p[-2] |= (msb << byte_bit_ofs);
788
}
789
};
790
791
bool basis_block_format_is_uncompressed(block_format tex_type);
792
793
} // namespace basist
794
795
796
797
798