CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
hrydgard

CoCalc provides the best real-time collaborative environment for Jupyter Notebooks, LaTeX documents, and SageMath, scalable from individual users to large groups and classes!

GitHub Repository: hrydgard/ppsspp
Path: blob/master/ext/jpge/jpge.cpp
Views: 1401
1
// jpge.cpp - C++ class for JPEG compression. Richard Geldreich <[email protected]>
2
// Supports grayscale, H1V1, H2V1, and H2V2 chroma subsampling factors, one or two pass Huffman table optimization, libjpeg-style quality 1-100 quality factors.
3
// Also supports using luma quantization tables for chroma.
4
//
5
// Released under two licenses. You are free to choose which license you want:
6
// License 1:
7
// Public Domain
8
//
9
// License 2:
10
// Licensed under the Apache License, Version 2.0 (the "License");
11
// you may not use this file except in compliance with the License.
12
// You may obtain a copy of the License at
13
//
14
// http://www.apache.org/licenses/LICENSE-2.0
15
//
16
// Unless required by applicable law or agreed to in writing, software
17
// distributed under the License is distributed on an "AS IS" BASIS,
18
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19
// See the License for the specific language governing permissions and
20
// limitations under the License.
21
//
22
// v1.01, Dec. 18, 2010 - Initial release
23
// v1.02, Apr. 6, 2011 - Removed 2x2 ordered dither in H2V1 chroma subsampling method load_block_16_8_8(). (The rounding factor was 2, when it should have been 1. Either way, it wasn't helping.)
24
// v1.03, Apr. 16, 2011 - Added support for optimized Huffman code tables, optimized dynamic memory allocation down to only 1 alloc.
25
// Also from Alex Evans: Added RGBA support, linear memory allocator (no longer needed in v1.03).
26
// v1.04, May. 19, 2012: Forgot to set m_pFile ptr to NULL in cfile_stream::close(). Thanks to Owen Kaluza for reporting this bug.
27
// Code tweaks to fix VS2008 static code analysis warnings (all looked harmless).
28
// Code review revealed method load_block_16_8_8() (used for the non-default H2V1 sampling mode to downsample chroma) somehow didn't get the rounding factor fix from v1.02.
29
// v1.05, March 25, 2020: Added Apache 2.0 alternate license
30
31
#include "jpge.h"
32
33
#include <stdio.h>
34
#include <stdlib.h>
35
#include <string.h>
36
37
#define JPGE_MAX(a,b) (((a)>(b))?(a):(b))
38
#define JPGE_MIN(a,b) (((a)<(b))?(a):(b))
39
40
namespace jpge {
41
42
static inline void* jpge_malloc(size_t nSize) { return malloc(nSize); }
43
static inline void jpge_free(void* p) { free(p); }
44
45
// Various JPEG enums and tables.
46
enum { M_SOF0 = 0xC0, M_DHT = 0xC4, M_SOI = 0xD8, M_EOI = 0xD9, M_SOS = 0xDA, M_DQT = 0xDB, M_APP0 = 0xE0 };
47
enum { DC_LUM_CODES = 12, AC_LUM_CODES = 256, DC_CHROMA_CODES = 12, AC_CHROMA_CODES = 256, MAX_HUFF_SYMBOLS = 257, MAX_HUFF_CODESIZE = 32 };
48
49
static uint8 s_zag[64] = { 0,1,8,16,9,2,3,10,17,24,32,25,18,11,4,5,12,19,26,33,40,48,41,34,27,20,13,6,7,14,21,28,35,42,49,56,57,50,43,36,29,22,15,23,30,37,44,51,58,59,52,45,38,31,39,46,53,60,61,54,47,55,62,63 };
50
static int16 s_std_lum_quant[64] = { 16,11,12,14,12,10,16,14,13,14,18,17,16,19,24,40,26,24,22,22,24,49,35,37,29,40,58,51,61,60,57,51,56,55,64,72,92,78,64,68,87,69,55,56,80,109,81,87,95,98,103,104,103,62,77,113,121,112,100,120,92,101,103,99 };
51
static int16 s_std_croma_quant[64] = { 17,18,18,24,21,24,47,26,26,47,99,66,56,66,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99 };
52
53
// Table from http://www.imagemagick.org/discourse-server/viewtopic.php?f=22&t=20333&p=98008#p98008
54
// This is mozjpeg's default table, in zag order.
55
static int16 s_alt_quant[64] = { 16,16,16,16,17,16,18,20,20,18,25,27,24,27,25,37,34,31,31,34,37,56,40,43,40,43,40,56,85,53,62,53,53,62,53,85,75,91,74,69,74,91,75,135,106,94,94,106,135,156,131,124,131,156,189,169,169,189,238,226,238,311,311,418 };
56
57
static uint8 s_dc_lum_bits[17] = { 0,0,1,5,1,1,1,1,1,1,0,0,0,0,0,0,0 };
58
static uint8 s_dc_lum_val[DC_LUM_CODES] = { 0,1,2,3,4,5,6,7,8,9,10,11 };
59
static uint8 s_ac_lum_bits[17] = { 0,0,2,1,3,3,2,4,3,5,5,4,4,0,0,1,0x7d };
60
static uint8 s_ac_lum_val[AC_LUM_CODES] =
61
{
62
0x01,0x02,0x03,0x00,0x04,0x11,0x05,0x12,0x21,0x31,0x41,0x06,0x13,0x51,0x61,0x07,0x22,0x71,0x14,0x32,0x81,0x91,0xa1,0x08,0x23,0x42,0xb1,0xc1,0x15,0x52,0xd1,0xf0,
63
0x24,0x33,0x62,0x72,0x82,0x09,0x0a,0x16,0x17,0x18,0x19,0x1a,0x25,0x26,0x27,0x28,0x29,0x2a,0x34,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48,0x49,
64
0x4a,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x83,0x84,0x85,0x86,0x87,0x88,0x89,
65
0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4,0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xc2,0xc3,0xc4,0xc5,
66
0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xe1,0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,
67
0xf9,0xfa
68
};
69
static uint8 s_dc_chroma_bits[17] = { 0,0,3,1,1,1,1,1,1,1,1,1,0,0,0,0,0 };
70
static uint8 s_dc_chroma_val[DC_CHROMA_CODES] = { 0,1,2,3,4,5,6,7,8,9,10,11 };
71
static uint8 s_ac_chroma_bits[17] = { 0,0,2,1,2,4,4,3,4,7,5,4,4,0,1,2,0x77 };
72
static uint8 s_ac_chroma_val[AC_CHROMA_CODES] =
73
{
74
0x00,0x01,0x02,0x03,0x11,0x04,0x05,0x21,0x31,0x06,0x12,0x41,0x51,0x07,0x61,0x71,0x13,0x22,0x32,0x81,0x08,0x14,0x42,0x91,0xa1,0xb1,0xc1,0x09,0x23,0x33,0x52,0xf0,
75
0x15,0x62,0x72,0xd1,0x0a,0x16,0x24,0x34,0xe1,0x25,0xf1,0x17,0x18,0x19,0x1a,0x26,0x27,0x28,0x29,0x2a,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48,
76
0x49,0x4a,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x82,0x83,0x84,0x85,0x86,0x87,
77
0x88,0x89,0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4,0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xc2,0xc3,
78
0xc4,0xc5,0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,
79
0xf9,0xfa
80
};
81
82
// Low-level helper functions.
83
template <class T> inline void clear_obj(T& obj) { memset(&obj, 0, sizeof(obj)); }
84
85
const int YR = 19595, YG = 38470, YB = 7471, CB_R = -11059, CB_G = -21709, CB_B = 32768, CR_R = 32768, CR_G = -27439, CR_B = -5329;
86
static inline uint8 clamp(int i) { if (static_cast<uint>(i) > 255U) { if (i < 0) i = 0; else if (i > 255) i = 255; } return static_cast<uint8>(i); }
87
88
static inline int left_shifti(int val, uint32 bits)
89
{
90
return static_cast<int>(static_cast<uint32>(val) << bits);
91
}
92
93
static void RGB_to_YCC(uint8* pDst, const uint8* pSrc, int num_pixels)
94
{
95
for (; num_pixels; pDst += 3, pSrc += 3, num_pixels--)
96
{
97
const int r = pSrc[0], g = pSrc[1], b = pSrc[2];
98
pDst[0] = static_cast<uint8>((r * YR + g * YG + b * YB + 32768) >> 16);
99
pDst[1] = clamp(128 + ((r * CB_R + g * CB_G + b * CB_B + 32768) >> 16));
100
pDst[2] = clamp(128 + ((r * CR_R + g * CR_G + b * CR_B + 32768) >> 16));
101
}
102
}
103
104
static void RGB_to_Y(uint8* pDst, const uint8* pSrc, int num_pixels)
105
{
106
for (; num_pixels; pDst++, pSrc += 3, num_pixels--)
107
pDst[0] = static_cast<uint8>((pSrc[0] * YR + pSrc[1] * YG + pSrc[2] * YB + 32768) >> 16);
108
}
109
110
static void RGBA_to_YCC(uint8* pDst, const uint8* pSrc, int num_pixels)
111
{
112
for (; num_pixels; pDst += 3, pSrc += 4, num_pixels--)
113
{
114
const int r = pSrc[0], g = pSrc[1], b = pSrc[2];
115
pDst[0] = static_cast<uint8>((r * YR + g * YG + b * YB + 32768) >> 16);
116
pDst[1] = clamp(128 + ((r * CB_R + g * CB_G + b * CB_B + 32768) >> 16));
117
pDst[2] = clamp(128 + ((r * CR_R + g * CR_G + b * CR_B + 32768) >> 16));
118
}
119
}
120
121
static void RGBA_to_Y(uint8* pDst, const uint8* pSrc, int num_pixels)
122
{
123
for (; num_pixels; pDst++, pSrc += 4, num_pixels--)
124
pDst[0] = static_cast<uint8>((pSrc[0] * YR + pSrc[1] * YG + pSrc[2] * YB + 32768) >> 16);
125
}
126
127
static void Y_to_YCC(uint8* pDst, const uint8* pSrc, int num_pixels)
128
{
129
for (; num_pixels; pDst += 3, pSrc++, num_pixels--) { pDst[0] = pSrc[0]; pDst[1] = 128; pDst[2] = 128; }
130
}
131
132
// Forward DCT - DCT derived from jfdctint.
133
enum { CONST_BITS = 13, ROW_BITS = 2 };
134
#define DCT_DESCALE(x, n) (((x) + (((int32)1) << ((n) - 1))) >> (n))
135
#define DCT_MUL(var, c) (static_cast<int16>(var) * static_cast<int32>(c))
136
#define DCT1D(s0, s1, s2, s3, s4, s5, s6, s7) \
137
int32 t0 = s0 + s7, t7 = s0 - s7, t1 = s1 + s6, t6 = s1 - s6, t2 = s2 + s5, t5 = s2 - s5, t3 = s3 + s4, t4 = s3 - s4; \
138
int32 t10 = t0 + t3, t13 = t0 - t3, t11 = t1 + t2, t12 = t1 - t2; \
139
int32 u1 = DCT_MUL(t12 + t13, 4433); \
140
s2 = u1 + DCT_MUL(t13, 6270); \
141
s6 = u1 + DCT_MUL(t12, -15137); \
142
u1 = t4 + t7; \
143
int32 u2 = t5 + t6, u3 = t4 + t6, u4 = t5 + t7; \
144
int32 z5 = DCT_MUL(u3 + u4, 9633); \
145
t4 = DCT_MUL(t4, 2446); t5 = DCT_MUL(t5, 16819); \
146
t6 = DCT_MUL(t6, 25172); t7 = DCT_MUL(t7, 12299); \
147
u1 = DCT_MUL(u1, -7373); u2 = DCT_MUL(u2, -20995); \
148
u3 = DCT_MUL(u3, -16069); u4 = DCT_MUL(u4, -3196); \
149
u3 += z5; u4 += z5; \
150
s0 = t10 + t11; s1 = t7 + u1 + u4; s3 = t6 + u2 + u3; s4 = t10 - t11; s5 = t5 + u2 + u4; s7 = t4 + u1 + u3;
151
152
static void DCT2D(int32* p)
153
{
154
int32 c, * q = p;
155
for (c = 7; c >= 0; c--, q += 8)
156
{
157
int32 s0 = q[0], s1 = q[1], s2 = q[2], s3 = q[3], s4 = q[4], s5 = q[5], s6 = q[6], s7 = q[7];
158
DCT1D(s0, s1, s2, s3, s4, s5, s6, s7);
159
q[0] = left_shifti(s0, ROW_BITS); q[1] = DCT_DESCALE(s1, CONST_BITS - ROW_BITS); q[2] = DCT_DESCALE(s2, CONST_BITS - ROW_BITS); q[3] = DCT_DESCALE(s3, CONST_BITS - ROW_BITS);
160
q[4] = left_shifti(s4, ROW_BITS); q[5] = DCT_DESCALE(s5, CONST_BITS - ROW_BITS); q[6] = DCT_DESCALE(s6, CONST_BITS - ROW_BITS); q[7] = DCT_DESCALE(s7, CONST_BITS - ROW_BITS);
161
}
162
for (q = p, c = 7; c >= 0; c--, q++)
163
{
164
int32 s0 = q[0 * 8], s1 = q[1 * 8], s2 = q[2 * 8], s3 = q[3 * 8], s4 = q[4 * 8], s5 = q[5 * 8], s6 = q[6 * 8], s7 = q[7 * 8];
165
DCT1D(s0, s1, s2, s3, s4, s5, s6, s7);
166
q[0 * 8] = DCT_DESCALE(s0, ROW_BITS + 3); q[1 * 8] = DCT_DESCALE(s1, CONST_BITS + ROW_BITS + 3); q[2 * 8] = DCT_DESCALE(s2, CONST_BITS + ROW_BITS + 3); q[3 * 8] = DCT_DESCALE(s3, CONST_BITS + ROW_BITS + 3);
167
q[4 * 8] = DCT_DESCALE(s4, ROW_BITS + 3); q[5 * 8] = DCT_DESCALE(s5, CONST_BITS + ROW_BITS + 3); q[6 * 8] = DCT_DESCALE(s6, CONST_BITS + ROW_BITS + 3); q[7 * 8] = DCT_DESCALE(s7, CONST_BITS + ROW_BITS + 3);
168
}
169
}
170
171
struct sym_freq { uint m_key, m_sym_index; };
172
173
// Radix sorts sym_freq[] array by 32-bit key m_key. Returns ptr to sorted values.
174
static inline sym_freq* radix_sort_syms(uint num_syms, sym_freq* pSyms0, sym_freq* pSyms1)
175
{
176
const uint cMaxPasses = 4;
177
uint32 hist[256 * cMaxPasses]; clear_obj(hist);
178
for (uint i = 0; i < num_syms; i++) { uint freq = pSyms0[i].m_key; hist[freq & 0xFF]++; hist[256 + ((freq >> 8) & 0xFF)]++; hist[256 * 2 + ((freq >> 16) & 0xFF)]++; hist[256 * 3 + ((freq >> 24) & 0xFF)]++; }
179
sym_freq* pCur_syms = pSyms0, * pNew_syms = pSyms1;
180
uint total_passes = cMaxPasses; while ((total_passes > 1) && (num_syms == hist[(total_passes - 1) * 256])) total_passes--;
181
for (uint pass_shift = 0, pass = 0; pass < total_passes; pass++, pass_shift += 8)
182
{
183
const uint32* pHist = &hist[pass << 8];
184
uint offsets[256], cur_ofs = 0;
185
for (uint i = 0; i < 256; i++) { offsets[i] = cur_ofs; cur_ofs += pHist[i]; }
186
for (uint i = 0; i < num_syms; i++)
187
pNew_syms[offsets[(pCur_syms[i].m_key >> pass_shift) & 0xFF]++] = pCur_syms[i];
188
sym_freq* t = pCur_syms; pCur_syms = pNew_syms; pNew_syms = t;
189
}
190
return pCur_syms;
191
}
192
193
// calculate_minimum_redundancy() originally written by: Alistair Moffat, [email protected], Jyrki Katajainen, [email protected], November 1996.
194
static void calculate_minimum_redundancy(sym_freq* A, int n)
195
{
196
int root, leaf, next, avbl, used, dpth;
197
if (n == 0) return; else if (n == 1) { A[0].m_key = 1; return; }
198
A[0].m_key += A[1].m_key; root = 0; leaf = 2;
199
for (next = 1; next < n - 1; next++)
200
{
201
if (leaf >= n || A[root].m_key < A[leaf].m_key) { A[next].m_key = A[root].m_key; A[root++].m_key = next; }
202
else A[next].m_key = A[leaf++].m_key;
203
if (leaf >= n || (root < next && A[root].m_key < A[leaf].m_key)) { A[next].m_key += A[root].m_key; A[root++].m_key = next; }
204
else A[next].m_key += A[leaf++].m_key;
205
}
206
A[n - 2].m_key = 0;
207
for (next = n - 3; next >= 0; next--) A[next].m_key = A[A[next].m_key].m_key + 1;
208
avbl = 1; used = dpth = 0; root = n - 2; next = n - 1;
209
while (avbl > 0)
210
{
211
while (root >= 0 && (int)A[root].m_key == dpth) { used++; root--; }
212
while (avbl > used) { A[next--].m_key = dpth; avbl--; }
213
avbl = 2 * used; dpth++; used = 0;
214
}
215
}
216
217
// Limits canonical Huffman code table's max code size to max_code_size.
218
static void huffman_enforce_max_code_size(int* pNum_codes, int code_list_len, int max_code_size)
219
{
220
if (code_list_len <= 1) return;
221
222
for (int i = max_code_size + 1; i <= MAX_HUFF_CODESIZE; i++) pNum_codes[max_code_size] += pNum_codes[i];
223
224
uint32 total = 0;
225
for (int i = max_code_size; i > 0; i--)
226
total += (((uint32)pNum_codes[i]) << (max_code_size - i));
227
228
while (total != (1UL << max_code_size))
229
{
230
pNum_codes[max_code_size]--;
231
for (int i = max_code_size - 1; i > 0; i--)
232
{
233
if (pNum_codes[i]) { pNum_codes[i]--; pNum_codes[i + 1] += 2; break; }
234
}
235
total--;
236
}
237
}
238
239
// Generates an optimized offman table.
240
void jpeg_encoder::optimize_huffman_table(int table_num, int table_len)
241
{
242
sym_freq syms0[MAX_HUFF_SYMBOLS], syms1[MAX_HUFF_SYMBOLS];
243
syms0[0].m_key = 1; syms0[0].m_sym_index = 0; // dummy symbol, assures that no valid code contains all 1's
244
int num_used_syms = 1;
245
const uint32* pSym_count = &m_huff_count[table_num][0];
246
for (int i = 0; i < table_len; i++)
247
if (pSym_count[i]) { syms0[num_used_syms].m_key = pSym_count[i]; syms0[num_used_syms++].m_sym_index = i + 1; }
248
sym_freq* pSyms = radix_sort_syms(num_used_syms, syms0, syms1);
249
calculate_minimum_redundancy(pSyms, num_used_syms);
250
251
// Count the # of symbols of each code size.
252
int num_codes[1 + MAX_HUFF_CODESIZE]; clear_obj(num_codes);
253
for (int i = 0; i < num_used_syms; i++)
254
num_codes[pSyms[i].m_key]++;
255
256
const uint JPGE_CODE_SIZE_LIMIT = 16; // the maximum possible size of a JPEG Huffman code (valid range is [9,16] - 9 vs. 8 because of the dummy symbol)
257
huffman_enforce_max_code_size(num_codes, num_used_syms, JPGE_CODE_SIZE_LIMIT);
258
259
// Compute m_huff_bits array, which contains the # of symbols per code size.
260
clear_obj(m_huff_bits[table_num]);
261
for (int i = 1; i <= (int)JPGE_CODE_SIZE_LIMIT; i++)
262
m_huff_bits[table_num][i] = static_cast<uint8>(num_codes[i]);
263
264
// Remove the dummy symbol added above, which must be in largest bucket.
265
for (int i = JPGE_CODE_SIZE_LIMIT; i >= 1; i--)
266
{
267
if (m_huff_bits[table_num][i]) { m_huff_bits[table_num][i]--; break; }
268
}
269
270
// Compute the m_huff_val array, which contains the symbol indices sorted by code size (smallest to largest).
271
for (int i = num_used_syms - 1; i >= 1; i--)
272
m_huff_val[table_num][num_used_syms - 1 - i] = static_cast<uint8>(pSyms[i].m_sym_index - 1);
273
}
274
275
// JPEG marker generation.
276
void jpeg_encoder::emit_byte(uint8 i)
277
{
278
m_all_stream_writes_succeeded = m_all_stream_writes_succeeded && m_pStream->put_obj(i);
279
}
280
281
void jpeg_encoder::emit_word(uint i)
282
{
283
emit_byte(uint8(i >> 8)); emit_byte(uint8(i & 0xFF));
284
}
285
286
void jpeg_encoder::emit_marker(int marker)
287
{
288
emit_byte(uint8(0xFF)); emit_byte(uint8(marker));
289
}
290
291
// Emit JFIF marker
292
void jpeg_encoder::emit_jfif_app0()
293
{
294
emit_marker(M_APP0);
295
emit_word(2 + 4 + 1 + 2 + 1 + 2 + 2 + 1 + 1);
296
emit_byte(0x4A); emit_byte(0x46); emit_byte(0x49); emit_byte(0x46); /* Identifier: ASCII "JFIF" */
297
emit_byte(0);
298
emit_byte(1); /* Major version */
299
emit_byte(1); /* Minor version */
300
emit_byte(0); /* Density unit */
301
emit_word(1);
302
emit_word(1);
303
emit_byte(0); /* No thumbnail image */
304
emit_byte(0);
305
}
306
307
// Emit quantization tables
308
void jpeg_encoder::emit_dqt()
309
{
310
for (int i = 0; i < ((m_num_components == 3) ? 2 : 1); i++)
311
{
312
emit_marker(M_DQT);
313
emit_word(64 + 1 + 2);
314
emit_byte(static_cast<uint8>(i));
315
for (int j = 0; j < 64; j++)
316
emit_byte(static_cast<uint8>(m_quantization_tables[i][j]));
317
}
318
}
319
320
// Emit start of frame marker
321
void jpeg_encoder::emit_sof()
322
{
323
emit_marker(M_SOF0); /* baseline */
324
emit_word(3 * m_num_components + 2 + 5 + 1);
325
emit_byte(8); /* precision */
326
emit_word(m_image_y);
327
emit_word(m_image_x);
328
emit_byte(m_num_components);
329
for (int i = 0; i < m_num_components; i++)
330
{
331
emit_byte(static_cast<uint8>(i + 1)); /* component ID */
332
emit_byte((m_comp_h_samp[i] << 4) + m_comp_v_samp[i]); /* h and v sampling */
333
emit_byte(i > 0); /* quant. table num */
334
}
335
}
336
337
// Emit Huffman table.
338
void jpeg_encoder::emit_dht(uint8* bits, uint8* val, int index, bool ac_flag)
339
{
340
emit_marker(M_DHT);
341
342
int length = 0;
343
for (int i = 1; i <= 16; i++)
344
length += bits[i];
345
346
emit_word(length + 2 + 1 + 16);
347
emit_byte(static_cast<uint8>(index + (ac_flag << 4)));
348
349
for (int i = 1; i <= 16; i++)
350
emit_byte(bits[i]);
351
352
for (int i = 0; i < length; i++)
353
emit_byte(val[i]);
354
}
355
356
// Emit all Huffman tables.
357
void jpeg_encoder::emit_dhts()
358
{
359
emit_dht(m_huff_bits[0 + 0], m_huff_val[0 + 0], 0, false);
360
emit_dht(m_huff_bits[2 + 0], m_huff_val[2 + 0], 0, true);
361
if (m_num_components == 3)
362
{
363
emit_dht(m_huff_bits[0 + 1], m_huff_val[0 + 1], 1, false);
364
emit_dht(m_huff_bits[2 + 1], m_huff_val[2 + 1], 1, true);
365
}
366
}
367
368
// emit start of scan
369
void jpeg_encoder::emit_sos()
370
{
371
emit_marker(M_SOS);
372
emit_word(2 * m_num_components + 2 + 1 + 3);
373
emit_byte(m_num_components);
374
for (int i = 0; i < m_num_components; i++)
375
{
376
emit_byte(static_cast<uint8>(i + 1));
377
if (i == 0)
378
emit_byte((0 << 4) + 0);
379
else
380
emit_byte((1 << 4) + 1);
381
}
382
emit_byte(0); /* spectral selection */
383
emit_byte(63);
384
emit_byte(0);
385
}
386
387
// Emit all markers at beginning of image file.
388
void jpeg_encoder::emit_markers()
389
{
390
emit_marker(M_SOI);
391
emit_jfif_app0();
392
emit_dqt();
393
emit_sof();
394
emit_dhts();
395
emit_sos();
396
}
397
398
// Compute the actual canonical Huffman codes/code sizes given the JPEG huff bits and val arrays.
399
void jpeg_encoder::compute_huffman_table(uint* codes, uint8* code_sizes, uint8* bits, uint8* val)
400
{
401
int i, l, last_p, si;
402
uint8 huff_size[257];
403
uint huff_code[257];
404
uint code;
405
406
int p = 0;
407
for (l = 1; l <= 16; l++)
408
for (i = 1; i <= bits[l]; i++)
409
huff_size[p++] = (char)l;
410
411
huff_size[p] = 0; last_p = p; // write sentinel
412
413
code = 0; si = huff_size[0]; p = 0;
414
415
while (huff_size[p])
416
{
417
while (huff_size[p] == si)
418
huff_code[p++] = code++;
419
code <<= 1;
420
si++;
421
}
422
423
memset(codes, 0, sizeof(codes[0]) * 256);
424
memset(code_sizes, 0, sizeof(code_sizes[0]) * 256);
425
for (p = 0; p < last_p; p++)
426
{
427
codes[val[p]] = huff_code[p];
428
code_sizes[val[p]] = huff_size[p];
429
}
430
}
431
432
// Quantization table generation.
433
void jpeg_encoder::compute_quant_table(int32* pDst, int16* pSrc)
434
{
435
int32 q;
436
if (m_params.m_quality < 50)
437
q = 5000 / m_params.m_quality;
438
else
439
q = 200 - m_params.m_quality * 2;
440
for (int i = 0; i < 64; i++)
441
{
442
int32 j = *pSrc++; j = (j * q + 50L) / 100L;
443
*pDst++ = JPGE_MIN(JPGE_MAX(j, 1), 255);
444
}
445
}
446
447
// Higher-level methods.
448
void jpeg_encoder::first_pass_init()
449
{
450
m_bit_buffer = 0; m_bits_in = 0;
451
memset(m_last_dc_val, 0, 3 * sizeof(m_last_dc_val[0]));
452
m_mcu_y_ofs = 0;
453
m_pass_num = 1;
454
}
455
456
bool jpeg_encoder::second_pass_init()
457
{
458
compute_huffman_table(&m_huff_codes[0 + 0][0], &m_huff_code_sizes[0 + 0][0], m_huff_bits[0 + 0], m_huff_val[0 + 0]);
459
compute_huffman_table(&m_huff_codes[2 + 0][0], &m_huff_code_sizes[2 + 0][0], m_huff_bits[2 + 0], m_huff_val[2 + 0]);
460
if (m_num_components > 1)
461
{
462
compute_huffman_table(&m_huff_codes[0 + 1][0], &m_huff_code_sizes[0 + 1][0], m_huff_bits[0 + 1], m_huff_val[0 + 1]);
463
compute_huffman_table(&m_huff_codes[2 + 1][0], &m_huff_code_sizes[2 + 1][0], m_huff_bits[2 + 1], m_huff_val[2 + 1]);
464
}
465
first_pass_init();
466
emit_markers();
467
m_pass_num = 2;
468
return true;
469
}
470
471
bool jpeg_encoder::jpg_open(int p_x_res, int p_y_res, int src_channels)
472
{
473
m_num_components = 3;
474
switch (m_params.m_subsampling)
475
{
476
case Y_ONLY:
477
{
478
m_num_components = 1;
479
m_comp_h_samp[0] = 1; m_comp_v_samp[0] = 1;
480
m_mcu_x = 8; m_mcu_y = 8;
481
break;
482
}
483
case H1V1:
484
{
485
m_comp_h_samp[0] = 1; m_comp_v_samp[0] = 1;
486
m_comp_h_samp[1] = 1; m_comp_v_samp[1] = 1;
487
m_comp_h_samp[2] = 1; m_comp_v_samp[2] = 1;
488
m_mcu_x = 8; m_mcu_y = 8;
489
break;
490
}
491
case H2V1:
492
{
493
m_comp_h_samp[0] = 2; m_comp_v_samp[0] = 1;
494
m_comp_h_samp[1] = 1; m_comp_v_samp[1] = 1;
495
m_comp_h_samp[2] = 1; m_comp_v_samp[2] = 1;
496
m_mcu_x = 16; m_mcu_y = 8;
497
break;
498
}
499
case H2V2:
500
{
501
m_comp_h_samp[0] = 2; m_comp_v_samp[0] = 2;
502
m_comp_h_samp[1] = 1; m_comp_v_samp[1] = 1;
503
m_comp_h_samp[2] = 1; m_comp_v_samp[2] = 1;
504
m_mcu_x = 16; m_mcu_y = 16;
505
}
506
}
507
508
m_image_x = p_x_res; m_image_y = p_y_res;
509
m_image_bpp = src_channels;
510
m_image_bpl = m_image_x * src_channels;
511
m_image_x_mcu = (m_image_x + m_mcu_x - 1) & (~(m_mcu_x - 1));
512
m_image_y_mcu = (m_image_y + m_mcu_y - 1) & (~(m_mcu_y - 1));
513
m_image_bpl_xlt = m_image_x * m_num_components;
514
m_image_bpl_mcu = m_image_x_mcu * m_num_components;
515
m_mcus_per_row = m_image_x_mcu / m_mcu_x;
516
517
if ((m_mcu_lines[0] = static_cast<uint8*>(jpge_malloc(m_image_bpl_mcu * m_mcu_y))) == NULL) return false;
518
for (int i = 1; i < m_mcu_y; i++)
519
m_mcu_lines[i] = m_mcu_lines[i - 1] + m_image_bpl_mcu;
520
521
if (m_params.m_use_std_tables)
522
{
523
compute_quant_table(m_quantization_tables[0], s_std_lum_quant);
524
compute_quant_table(m_quantization_tables[1], m_params.m_no_chroma_discrim_flag ? s_std_lum_quant : s_std_croma_quant);
525
}
526
else
527
{
528
compute_quant_table(m_quantization_tables[0], s_alt_quant);
529
memcpy(m_quantization_tables[1], m_quantization_tables[0], sizeof(m_quantization_tables[1]));
530
}
531
532
m_out_buf_left = JPGE_OUT_BUF_SIZE;
533
m_pOut_buf = m_out_buf;
534
535
if (m_params.m_two_pass_flag)
536
{
537
clear_obj(m_huff_count);
538
first_pass_init();
539
}
540
else
541
{
542
memcpy(m_huff_bits[0 + 0], s_dc_lum_bits, 17); memcpy(m_huff_val[0 + 0], s_dc_lum_val, DC_LUM_CODES);
543
memcpy(m_huff_bits[2 + 0], s_ac_lum_bits, 17); memcpy(m_huff_val[2 + 0], s_ac_lum_val, AC_LUM_CODES);
544
memcpy(m_huff_bits[0 + 1], s_dc_chroma_bits, 17); memcpy(m_huff_val[0 + 1], s_dc_chroma_val, DC_CHROMA_CODES);
545
memcpy(m_huff_bits[2 + 1], s_ac_chroma_bits, 17); memcpy(m_huff_val[2 + 1], s_ac_chroma_val, AC_CHROMA_CODES);
546
if (!second_pass_init()) return false; // in effect, skip over the first pass
547
}
548
return m_all_stream_writes_succeeded;
549
}
550
551
void jpeg_encoder::load_block_8_8_grey(int x)
552
{
553
uint8* pSrc;
554
sample_array_t* pDst = m_sample_array;
555
x <<= 3;
556
for (int i = 0; i < 8; i++, pDst += 8)
557
{
558
pSrc = m_mcu_lines[i] + x;
559
pDst[0] = pSrc[0] - 128; pDst[1] = pSrc[1] - 128; pDst[2] = pSrc[2] - 128; pDst[3] = pSrc[3] - 128;
560
pDst[4] = pSrc[4] - 128; pDst[5] = pSrc[5] - 128; pDst[6] = pSrc[6] - 128; pDst[7] = pSrc[7] - 128;
561
}
562
}
563
564
void jpeg_encoder::load_block_8_8(int x, int y, int c)
565
{
566
uint8* pSrc;
567
sample_array_t* pDst = m_sample_array;
568
x = (x * (8 * 3)) + c;
569
y <<= 3;
570
for (int i = 0; i < 8; i++, pDst += 8)
571
{
572
pSrc = m_mcu_lines[y + i] + x;
573
pDst[0] = pSrc[0 * 3] - 128; pDst[1] = pSrc[1 * 3] - 128; pDst[2] = pSrc[2 * 3] - 128; pDst[3] = pSrc[3 * 3] - 128;
574
pDst[4] = pSrc[4 * 3] - 128; pDst[5] = pSrc[5 * 3] - 128; pDst[6] = pSrc[6 * 3] - 128; pDst[7] = pSrc[7 * 3] - 128;
575
}
576
}
577
578
void jpeg_encoder::load_block_16_8(int x, int c)
579
{
580
uint8* pSrc1, * pSrc2;
581
sample_array_t* pDst = m_sample_array;
582
x = (x * (16 * 3)) + c;
583
for (int i = 0; i < 16; i += 2, pDst += 8)
584
{
585
pSrc1 = m_mcu_lines[i + 0] + x;
586
pSrc2 = m_mcu_lines[i + 1] + x;
587
pDst[0] = ((pSrc1[0 * 3] + pSrc1[1 * 3] + pSrc2[0 * 3] + pSrc2[1 * 3] + 2) >> 2) - 128; pDst[1] = ((pSrc1[2 * 3] + pSrc1[3 * 3] + pSrc2[2 * 3] + pSrc2[3 * 3] + 2) >> 2) - 128;
588
pDst[2] = ((pSrc1[4 * 3] + pSrc1[5 * 3] + pSrc2[4 * 3] + pSrc2[5 * 3] + 2) >> 2) - 128; pDst[3] = ((pSrc1[6 * 3] + pSrc1[7 * 3] + pSrc2[6 * 3] + pSrc2[7 * 3] + 2) >> 2) - 128;
589
pDst[4] = ((pSrc1[8 * 3] + pSrc1[9 * 3] + pSrc2[8 * 3] + pSrc2[9 * 3] + 2) >> 2) - 128; pDst[5] = ((pSrc1[10 * 3] + pSrc1[11 * 3] + pSrc2[10 * 3] + pSrc2[11 * 3] + 2) >> 2) - 128;
590
pDst[6] = ((pSrc1[12 * 3] + pSrc1[13 * 3] + pSrc2[12 * 3] + pSrc2[13 * 3] + 2) >> 2) - 128; pDst[7] = ((pSrc1[14 * 3] + pSrc1[15 * 3] + pSrc2[14 * 3] + pSrc2[15 * 3] + 2) >> 2) - 128;
591
}
592
}
593
594
void jpeg_encoder::load_block_16_8_8(int x, int c)
595
{
596
uint8* pSrc1;
597
sample_array_t* pDst = m_sample_array;
598
x = (x * (16 * 3)) + c;
599
for (int i = 0; i < 8; i++, pDst += 8)
600
{
601
pSrc1 = m_mcu_lines[i + 0] + x;
602
pDst[0] = ((pSrc1[0 * 3] + pSrc1[1 * 3] + 1) >> 1) - 128; pDst[1] = ((pSrc1[2 * 3] + pSrc1[3 * 3] + 1) >> 1) - 128;
603
pDst[2] = ((pSrc1[4 * 3] + pSrc1[5 * 3] + 1) >> 1) - 128; pDst[3] = ((pSrc1[6 * 3] + pSrc1[7 * 3] + 1) >> 1) - 128;
604
pDst[4] = ((pSrc1[8 * 3] + pSrc1[9 * 3] + 1) >> 1) - 128; pDst[5] = ((pSrc1[10 * 3] + pSrc1[11 * 3] + 1) >> 1) - 128;
605
pDst[6] = ((pSrc1[12 * 3] + pSrc1[13 * 3] + 1) >> 1) - 128; pDst[7] = ((pSrc1[14 * 3] + pSrc1[15 * 3] + 1) >> 1) - 128;
606
}
607
}
608
609
void jpeg_encoder::load_quantized_coefficients(int component_num)
610
{
611
int32* q = m_quantization_tables[component_num > 0];
612
int16* pDst = m_coefficient_array;
613
for (int i = 0; i < 64; i++)
614
{
615
sample_array_t j = m_sample_array[s_zag[i]];
616
if (j < 0)
617
{
618
if ((j = -j + (*q >> 1)) < *q)
619
*pDst++ = 0;
620
else
621
*pDst++ = static_cast<int16>(-(j / *q));
622
}
623
else
624
{
625
if ((j = j + (*q >> 1)) < *q)
626
*pDst++ = 0;
627
else
628
*pDst++ = static_cast<int16>((j / *q));
629
}
630
q++;
631
}
632
}
633
634
void jpeg_encoder::flush_output_buffer()
635
{
636
if (m_out_buf_left != JPGE_OUT_BUF_SIZE)
637
m_all_stream_writes_succeeded = m_all_stream_writes_succeeded && m_pStream->put_buf(m_out_buf, JPGE_OUT_BUF_SIZE - m_out_buf_left);
638
m_pOut_buf = m_out_buf;
639
m_out_buf_left = JPGE_OUT_BUF_SIZE;
640
}
641
642
void jpeg_encoder::put_bits(uint bits, uint len)
643
{
644
m_bit_buffer |= ((uint32)bits << (24 - (m_bits_in += len)));
645
while (m_bits_in >= 8)
646
{
647
uint8 c;
648
#define JPGE_PUT_BYTE(c) { *m_pOut_buf++ = (c); if (--m_out_buf_left == 0) flush_output_buffer(); }
649
JPGE_PUT_BYTE(c = (uint8)((m_bit_buffer >> 16) & 0xFF));
650
if (c == 0xFF) JPGE_PUT_BYTE(0);
651
m_bit_buffer <<= 8;
652
m_bits_in -= 8;
653
}
654
}
655
656
void jpeg_encoder::code_coefficients_pass_one(int component_num)
657
{
658
if (component_num >= 3) return; // just to shut up static analysis
659
int i, run_len, nbits, temp1;
660
int16* src = m_coefficient_array;
661
uint32* dc_count = component_num ? m_huff_count[0 + 1] : m_huff_count[0 + 0], * ac_count = component_num ? m_huff_count[2 + 1] : m_huff_count[2 + 0];
662
663
temp1 = src[0] - m_last_dc_val[component_num];
664
m_last_dc_val[component_num] = src[0];
665
if (temp1 < 0) temp1 = -temp1;
666
667
nbits = 0;
668
while (temp1)
669
{
670
nbits++; temp1 >>= 1;
671
}
672
673
dc_count[nbits]++;
674
for (run_len = 0, i = 1; i < 64; i++)
675
{
676
if ((temp1 = m_coefficient_array[i]) == 0)
677
run_len++;
678
else
679
{
680
while (run_len >= 16)
681
{
682
ac_count[0xF0]++;
683
run_len -= 16;
684
}
685
if (temp1 < 0) temp1 = -temp1;
686
nbits = 1;
687
while (temp1 >>= 1) nbits++;
688
ac_count[(run_len << 4) + nbits]++;
689
run_len = 0;
690
}
691
}
692
if (run_len) ac_count[0]++;
693
}
694
695
void jpeg_encoder::code_coefficients_pass_two(int component_num)
696
{
697
int i, j, run_len, nbits, temp1, temp2;
698
int16* pSrc = m_coefficient_array;
699
uint* codes[2];
700
uint8* code_sizes[2];
701
702
if (component_num == 0)
703
{
704
codes[0] = m_huff_codes[0 + 0]; codes[1] = m_huff_codes[2 + 0];
705
code_sizes[0] = m_huff_code_sizes[0 + 0]; code_sizes[1] = m_huff_code_sizes[2 + 0];
706
}
707
else
708
{
709
codes[0] = m_huff_codes[0 + 1]; codes[1] = m_huff_codes[2 + 1];
710
code_sizes[0] = m_huff_code_sizes[0 + 1]; code_sizes[1] = m_huff_code_sizes[2 + 1];
711
}
712
713
temp1 = temp2 = pSrc[0] - m_last_dc_val[component_num];
714
m_last_dc_val[component_num] = pSrc[0];
715
716
if (temp1 < 0)
717
{
718
temp1 = -temp1; temp2--;
719
}
720
721
nbits = 0;
722
while (temp1)
723
{
724
nbits++; temp1 >>= 1;
725
}
726
727
put_bits(codes[0][nbits], code_sizes[0][nbits]);
728
if (nbits) put_bits(temp2 & ((1 << nbits) - 1), nbits);
729
730
for (run_len = 0, i = 1; i < 64; i++)
731
{
732
if ((temp1 = m_coefficient_array[i]) == 0)
733
run_len++;
734
else
735
{
736
while (run_len >= 16)
737
{
738
put_bits(codes[1][0xF0], code_sizes[1][0xF0]);
739
run_len -= 16;
740
}
741
if ((temp2 = temp1) < 0)
742
{
743
temp1 = -temp1;
744
temp2--;
745
}
746
nbits = 1;
747
while (temp1 >>= 1)
748
nbits++;
749
j = (run_len << 4) + nbits;
750
put_bits(codes[1][j], code_sizes[1][j]);
751
put_bits(temp2 & ((1 << nbits) - 1), nbits);
752
run_len = 0;
753
}
754
}
755
if (run_len)
756
put_bits(codes[1][0], code_sizes[1][0]);
757
}
758
759
void jpeg_encoder::code_block(int component_num)
760
{
761
DCT2D(m_sample_array);
762
load_quantized_coefficients(component_num);
763
if (m_pass_num == 1)
764
code_coefficients_pass_one(component_num);
765
else
766
code_coefficients_pass_two(component_num);
767
}
768
769
void jpeg_encoder::process_mcu_row()
770
{
771
if (m_num_components == 1)
772
{
773
for (int i = 0; i < m_mcus_per_row; i++)
774
{
775
load_block_8_8_grey(i); code_block(0);
776
}
777
}
778
else if ((m_comp_h_samp[0] == 1) && (m_comp_v_samp[0] == 1))
779
{
780
for (int i = 0; i < m_mcus_per_row; i++)
781
{
782
load_block_8_8(i, 0, 0); code_block(0); load_block_8_8(i, 0, 1); code_block(1); load_block_8_8(i, 0, 2); code_block(2);
783
}
784
}
785
else if ((m_comp_h_samp[0] == 2) && (m_comp_v_samp[0] == 1))
786
{
787
for (int i = 0; i < m_mcus_per_row; i++)
788
{
789
load_block_8_8(i * 2 + 0, 0, 0); code_block(0); load_block_8_8(i * 2 + 1, 0, 0); code_block(0);
790
load_block_16_8_8(i, 1); code_block(1); load_block_16_8_8(i, 2); code_block(2);
791
}
792
}
793
else if ((m_comp_h_samp[0] == 2) && (m_comp_v_samp[0] == 2))
794
{
795
for (int i = 0; i < m_mcus_per_row; i++)
796
{
797
load_block_8_8(i * 2 + 0, 0, 0); code_block(0); load_block_8_8(i * 2 + 1, 0, 0); code_block(0);
798
load_block_8_8(i * 2 + 0, 1, 0); code_block(0); load_block_8_8(i * 2 + 1, 1, 0); code_block(0);
799
load_block_16_8(i, 1); code_block(1); load_block_16_8(i, 2); code_block(2);
800
}
801
}
802
}
803
804
bool jpeg_encoder::terminate_pass_one()
805
{
806
optimize_huffman_table(0 + 0, DC_LUM_CODES); optimize_huffman_table(2 + 0, AC_LUM_CODES);
807
if (m_num_components > 1)
808
{
809
optimize_huffman_table(0 + 1, DC_CHROMA_CODES); optimize_huffman_table(2 + 1, AC_CHROMA_CODES);
810
}
811
return second_pass_init();
812
}
813
814
bool jpeg_encoder::terminate_pass_two()
815
{
816
put_bits(0x7F, 7);
817
flush_output_buffer();
818
emit_marker(M_EOI);
819
m_pass_num++; // purposely bump up m_pass_num, for debugging
820
return true;
821
}
822
823
bool jpeg_encoder::process_end_of_image()
824
{
825
if (m_mcu_y_ofs)
826
{
827
if (m_mcu_y_ofs < 16) // check here just to shut up static analysis
828
{
829
for (int i = m_mcu_y_ofs; i < m_mcu_y; i++)
830
memcpy(m_mcu_lines[i], m_mcu_lines[m_mcu_y_ofs - 1], m_image_bpl_mcu);
831
}
832
833
process_mcu_row();
834
}
835
836
if (m_pass_num == 1)
837
return terminate_pass_one();
838
else
839
return terminate_pass_two();
840
}
841
842
void jpeg_encoder::load_mcu(const void* pSrc)
843
{
844
const uint8* Psrc = reinterpret_cast<const uint8*>(pSrc);
845
846
uint8* pDst = m_mcu_lines[m_mcu_y_ofs]; // OK to write up to m_image_bpl_xlt bytes to pDst
847
848
if (m_num_components == 1)
849
{
850
if (m_image_bpp == 4)
851
RGBA_to_Y(pDst, Psrc, m_image_x);
852
else if (m_image_bpp == 3)
853
RGB_to_Y(pDst, Psrc, m_image_x);
854
else
855
memcpy(pDst, Psrc, m_image_x);
856
}
857
else
858
{
859
if (m_image_bpp == 4)
860
RGBA_to_YCC(pDst, Psrc, m_image_x);
861
else if (m_image_bpp == 3)
862
RGB_to_YCC(pDst, Psrc, m_image_x);
863
else
864
Y_to_YCC(pDst, Psrc, m_image_x);
865
}
866
867
// Possibly duplicate pixels at end of scanline if not a multiple of 8 or 16
868
if (m_num_components == 1)
869
memset(m_mcu_lines[m_mcu_y_ofs] + m_image_bpl_xlt, pDst[m_image_bpl_xlt - 1], m_image_x_mcu - m_image_x);
870
else
871
{
872
const uint8 y = pDst[m_image_bpl_xlt - 3 + 0], cb = pDst[m_image_bpl_xlt - 3 + 1], cr = pDst[m_image_bpl_xlt - 3 + 2];
873
uint8* q = m_mcu_lines[m_mcu_y_ofs] + m_image_bpl_xlt;
874
for (int i = m_image_x; i < m_image_x_mcu; i++)
875
{
876
*q++ = y; *q++ = cb; *q++ = cr;
877
}
878
}
879
880
if (++m_mcu_y_ofs == m_mcu_y)
881
{
882
process_mcu_row();
883
m_mcu_y_ofs = 0;
884
}
885
}
886
887
void jpeg_encoder::clear()
888
{
889
m_mcu_lines[0] = NULL;
890
m_pass_num = 0;
891
m_all_stream_writes_succeeded = true;
892
}
893
894
jpeg_encoder::jpeg_encoder()
895
{
896
clear();
897
}
898
899
jpeg_encoder::~jpeg_encoder()
900
{
901
deinit();
902
}
903
904
bool jpeg_encoder::init(output_stream* pStream, int width, int height, int src_channels, const params& comp_params)
905
{
906
deinit();
907
if (((!pStream) || (width < 1) || (height < 1)) || ((src_channels != 1) && (src_channels != 3) && (src_channels != 4)) || (!comp_params.check())) return false;
908
m_pStream = pStream;
909
m_params = comp_params;
910
return jpg_open(width, height, src_channels);
911
}
912
913
void jpeg_encoder::deinit()
914
{
915
jpge_free(m_mcu_lines[0]);
916
clear();
917
}
918
919
bool jpeg_encoder::process_scanline(const void* pScanline)
920
{
921
if ((m_pass_num < 1) || (m_pass_num > 2)) return false;
922
if (m_all_stream_writes_succeeded)
923
{
924
if (!pScanline)
925
{
926
if (!process_end_of_image()) return false;
927
}
928
else
929
{
930
load_mcu(pScanline);
931
}
932
}
933
return m_all_stream_writes_succeeded;
934
}
935
936
// Higher level wrappers/examples (optional).
937
938
class cfile_stream : public output_stream
939
{
940
cfile_stream(const cfile_stream&);
941
cfile_stream& operator= (const cfile_stream&);
942
943
FILE* m_pFile;
944
bool m_bStatus;
945
946
public:
947
cfile_stream() : m_pFile(NULL), m_bStatus(false) { }
948
949
virtual ~cfile_stream()
950
{
951
close();
952
}
953
954
bool open(const char* pFilename)
955
{
956
close();
957
m_pFile = fopen(pFilename, "wb");
958
m_bStatus = (m_pFile != NULL);
959
return m_bStatus;
960
}
961
962
bool close()
963
{
964
if (m_pFile)
965
{
966
if (fclose(m_pFile) == EOF)
967
{
968
m_bStatus = false;
969
}
970
m_pFile = NULL;
971
}
972
return m_bStatus;
973
}
974
975
virtual bool put_buf(const void* pBuf, int len)
976
{
977
m_bStatus = m_bStatus && (fwrite(pBuf, len, 1, m_pFile) == 1);
978
return m_bStatus;
979
}
980
981
uint get_size() const
982
{
983
return m_pFile ? ftell(m_pFile) : 0;
984
}
985
};
986
987
// Writes JPEG image to file.
988
bool compress_image_to_jpeg_file(const char* pFilename, int width, int height, int num_channels, const uint8* pImage_data, const params& comp_params)
989
{
990
cfile_stream dst_stream;
991
if (!dst_stream.open(pFilename))
992
return false;
993
994
jpge::jpeg_encoder dst_image;
995
if (!dst_image.init(&dst_stream, width, height, num_channels, comp_params))
996
return false;
997
998
for (uint pass_index = 0; pass_index < dst_image.get_total_passes(); pass_index++)
999
{
1000
for (int i = 0; i < height; i++)
1001
{
1002
const uint8* pBuf = pImage_data + i * width * num_channels;
1003
if (!dst_image.process_scanline(pBuf))
1004
return false;
1005
}
1006
if (!dst_image.process_scanline(NULL))
1007
return false;
1008
}
1009
1010
dst_image.deinit();
1011
1012
return dst_stream.close();
1013
}
1014
1015
class memory_stream : public output_stream
1016
{
1017
memory_stream(const memory_stream&);
1018
memory_stream& operator= (const memory_stream&);
1019
1020
uint8* m_pBuf;
1021
uint m_buf_size, m_buf_ofs;
1022
1023
public:
1024
memory_stream(void* pBuf, uint buf_size) : m_pBuf(static_cast<uint8*>(pBuf)), m_buf_size(buf_size), m_buf_ofs(0) { }
1025
1026
virtual ~memory_stream() { }
1027
1028
virtual bool put_buf(const void* pBuf, int len)
1029
{
1030
uint buf_remaining = m_buf_size - m_buf_ofs;
1031
if ((uint)len > buf_remaining)
1032
return false;
1033
memcpy(m_pBuf + m_buf_ofs, pBuf, len);
1034
m_buf_ofs += len;
1035
return true;
1036
}
1037
1038
uint get_size() const
1039
{
1040
return m_buf_ofs;
1041
}
1042
};
1043
1044
bool compress_image_to_jpeg_file_in_memory(void* pDstBuf, int& buf_size, int width, int height, int num_channels, const uint8* pImage_data, const params& comp_params)
1045
{
1046
if ((!pDstBuf) || (!buf_size))
1047
return false;
1048
1049
memory_stream dst_stream(pDstBuf, buf_size);
1050
1051
buf_size = 0;
1052
1053
jpge::jpeg_encoder dst_image;
1054
if (!dst_image.init(&dst_stream, width, height, num_channels, comp_params))
1055
return false;
1056
1057
for (uint pass_index = 0; pass_index < dst_image.get_total_passes(); pass_index++)
1058
{
1059
for (int i = 0; i < height; i++)
1060
{
1061
const uint8* pScanline = pImage_data + i * width * num_channels;
1062
if (!dst_image.process_scanline(pScanline))
1063
return false;
1064
}
1065
if (!dst_image.process_scanline(NULL))
1066
return false;
1067
}
1068
1069
dst_image.deinit();
1070
1071
buf_size = dst_stream.get_size();
1072
return true;
1073
}
1074
1075
} // namespace jpge
1076
1077