CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
huggingface

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

GitHub Repository: huggingface/notebooks
Path: blob/main/course/en/chapter7/section4_pt.ipynb
Views: 2549
Kernel: Unknown Kernel

Translation (PyTorch)

Install the Transformers, Datasets, and Evaluate libraries to run this notebook.

!pip install datasets evaluate transformers[sentencepiece] !pip install accelerate # To run the training on TPU, you will need to uncomment the following line: # !pip install cloud-tpu-client==0.10 torch==1.9.0 https://storage.googleapis.com/tpu-pytorch/wheels/torch_xla-1.9-cp37-cp37m-linux_x86_64.whl !apt install git-lfs

You will need to setup git, adapt your email and name in the following cell.

!git config --global user.email "[email protected]" !git config --global user.name "Your Name"

You will also need to be logged in to the Hugging Face Hub. Execute the following and enter your credentials.

from huggingface_hub import notebook_login notebook_login()
from datasets import load_dataset raw_datasets = load_dataset("kde4", lang1="en", lang2="fr")
raw_datasets
DatasetDict({ train: Dataset({ features: ['id', 'translation'], num_rows: 210173 }) })
split_datasets = raw_datasets["train"].train_test_split(train_size=0.9, seed=20) split_datasets
DatasetDict({ train: Dataset({ features: ['id', 'translation'], num_rows: 189155 }) test: Dataset({ features: ['id', 'translation'], num_rows: 21018 }) })
split_datasets["validation"] = split_datasets.pop("test")
split_datasets["train"][1]["translation"]
{'en': 'Default to expanded threads', 'fr': 'Par défaut, développer les fils de discussion'}
from transformers import pipeline model_checkpoint = "Helsinki-NLP/opus-mt-en-fr" translator = pipeline("translation", model=model_checkpoint) translator("Default to expanded threads")
[{'translation_text': 'Par défaut pour les threads élargis'}]
split_datasets["train"][172]["translation"]
{'en': 'Unable to import %1 using the OFX importer plugin. This file is not the correct format.', 'fr': "Impossible d'importer %1 en utilisant le module d'extension d'importation OFX. Ce fichier n'a pas un format correct."}
translator( "Unable to import %1 using the OFX importer plugin. This file is not the correct format." )
[{'translation_text': "Impossible d'importer %1 en utilisant le plugin d'importateur OFX. Ce fichier n'est pas le bon format."}]
from transformers import AutoTokenizer model_checkpoint = "Helsinki-NLP/opus-mt-en-fr" tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt")
en_sentence = split_datasets["train"][1]["translation"]["en"] fr_sentence = split_datasets["train"][1]["translation"]["fr"] inputs = tokenizer(en_sentence, text_target=fr_sentence) inputs
{'input_ids': [47591, 12, 9842, 19634, 9, 0], 'attention_mask': [1, 1, 1, 1, 1, 1], 'labels': [577, 5891, 2, 3184, 16, 2542, 5, 1710, 0]}
wrong_targets = tokenizer(fr_sentence) print(tokenizer.convert_ids_to_tokens(wrong_targets["input_ids"])) print(tokenizer.convert_ids_to_tokens(inputs["labels"]))
['▁Par', '▁dé', 'f', 'aut', ',', '▁dé', 've', 'lop', 'per', '▁les', '▁fil', 's', '▁de', '▁discussion', '</s>'] ['▁Par', '▁défaut', ',', '▁développer', '▁les', '▁fils', '▁de', '▁discussion', '</s>']
max_length = 128 def preprocess_function(examples): inputs = [ex["en"] for ex in examples["translation"]] targets = [ex["fr"] for ex in examples["translation"]] model_inputs = tokenizer( inputs, text_target=targets, max_length=max_length, truncation=True ) return model_inputs
tokenized_datasets = split_datasets.map( preprocess_function, batched=True, remove_columns=split_datasets["train"].column_names, )
from transformers import AutoModelForSeq2SeqLM model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
from transformers import DataCollatorForSeq2Seq data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
batch = data_collator([tokenized_datasets["train"][i] for i in range(1, 3)]) batch.keys()
dict_keys(['attention_mask', 'input_ids', 'labels', 'decoder_input_ids'])
batch["labels"]
tensor([[ 577, 5891, 2, 3184, 16, 2542, 5, 1710, 0, -100, -100, -100, -100, -100, -100, -100], [ 1211, 3, 49, 9409, 1211, 3, 29140, 817, 3124, 817, 550, 7032, 5821, 7907, 12649, 0]])
batch["decoder_input_ids"]
tensor([[59513, 577, 5891, 2, 3184, 16, 2542, 5, 1710, 0, 59513, 59513, 59513, 59513, 59513, 59513], [59513, 1211, 3, 49, 9409, 1211, 3, 29140, 817, 3124, 817, 550, 7032, 5821, 7907, 12649]])
for i in range(1, 3): print(tokenized_datasets["train"][i]["labels"])
[577, 5891, 2, 3184, 16, 2542, 5, 1710, 0] [1211, 3, 49, 9409, 1211, 3, 29140, 817, 3124, 817, 550, 7032, 5821, 7907, 12649, 0]
!pip install sacrebleu
import evaluate metric = evaluate.load("sacrebleu")
predictions = [ "This plugin lets you translate web pages between several languages automatically." ] references = [ [ "This plugin allows you to automatically translate web pages between several languages." ] ] metric.compute(predictions=predictions, references=references)
{'score': 46.750469682990165, 'counts': [11, 6, 4, 3], 'totals': [12, 11, 10, 9], 'precisions': [91.67, 54.54, 40.0, 33.33], 'bp': 0.9200444146293233, 'sys_len': 12, 'ref_len': 13}
predictions = ["This This This This"] references = [ [ "This plugin allows you to automatically translate web pages between several languages." ] ] metric.compute(predictions=predictions, references=references)
{'score': 1.683602693167689, 'counts': [1, 0, 0, 0], 'totals': [4, 3, 2, 1], 'precisions': [25.0, 16.67, 12.5, 12.5], 'bp': 0.10539922456186433, 'sys_len': 4, 'ref_len': 13}
predictions = ["This plugin"] references = [ [ "This plugin allows you to automatically translate web pages between several languages." ] ] metric.compute(predictions=predictions, references=references)
{'score': 0.0, 'counts': [2, 1, 0, 0], 'totals': [2, 1, 0, 0], 'precisions': [100.0, 100.0, 0.0, 0.0], 'bp': 0.004086771438464067, 'sys_len': 2, 'ref_len': 13}
import numpy as np def compute_metrics(eval_preds): preds, labels = eval_preds # In case the model returns more than the prediction logits if isinstance(preds, tuple): preds = preds[0] decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) # Replace -100s in the labels as we can't decode them labels = np.where(labels != -100, labels, tokenizer.pad_token_id) decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) # Some simple post-processing decoded_preds = [pred.strip() for pred in decoded_preds] decoded_labels = [[label.strip()] for label in decoded_labels] result = metric.compute(predictions=decoded_preds, references=decoded_labels) return {"bleu": result["score"]}
from huggingface_hub import notebook_login notebook_login()
from transformers import Seq2SeqTrainingArguments args = Seq2SeqTrainingArguments( f"marian-finetuned-kde4-en-to-fr", evaluation_strategy="no", save_strategy="epoch", learning_rate=2e-5, per_device_train_batch_size=32, per_device_eval_batch_size=64, weight_decay=0.01, save_total_limit=3, num_train_epochs=3, predict_with_generate=True, fp16=True, push_to_hub=True, )
from transformers import Seq2SeqTrainer trainer = Seq2SeqTrainer( model, args, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["validation"], data_collator=data_collator, tokenizer=tokenizer, compute_metrics=compute_metrics, )
trainer.evaluate(max_length=max_length)
{'eval_loss': 1.6964408159255981, 'eval_bleu': 39.26865061007616, 'eval_runtime': 965.8884, 'eval_samples_per_second': 21.76, 'eval_steps_per_second': 0.341}
trainer.train()
trainer.evaluate(max_length=max_length)
{'eval_loss': 0.8558505773544312, 'eval_bleu': 52.94161337775576, 'eval_runtime': 714.2576, 'eval_samples_per_second': 29.426, 'eval_steps_per_second': 0.461, 'epoch': 3.0}
trainer.push_to_hub(tags="translation", commit_message="Training complete")
'https://huggingface.co/sgugger/marian-finetuned-kde4-en-to-fr/commit/3601d621e3baae2bc63d3311452535f8f58f6ef3'
from torch.utils.data import DataLoader tokenized_datasets.set_format("torch") train_dataloader = DataLoader( tokenized_datasets["train"], shuffle=True, collate_fn=data_collator, batch_size=8, ) eval_dataloader = DataLoader( tokenized_datasets["validation"], collate_fn=data_collator, batch_size=8 )
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
from transformers import AdamW optimizer = AdamW(model.parameters(), lr=2e-5)
from accelerate import Accelerator accelerator = Accelerator() model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader )
from transformers import get_scheduler num_train_epochs = 3 num_update_steps_per_epoch = len(train_dataloader) num_training_steps = num_train_epochs * num_update_steps_per_epoch lr_scheduler = get_scheduler( "linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps, )
from huggingface_hub import Repository, get_full_repo_name model_name = "marian-finetuned-kde4-en-to-fr-accelerate" repo_name = get_full_repo_name(model_name) repo_name
'sgugger/marian-finetuned-kde4-en-to-fr-accelerate'
output_dir = "marian-finetuned-kde4-en-to-fr-accelerate" repo = Repository(output_dir, clone_from=repo_name)
def postprocess(predictions, labels): predictions = predictions.cpu().numpy() labels = labels.cpu().numpy() decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True) # Replace -100 in the labels as we can't decode them. labels = np.where(labels != -100, labels, tokenizer.pad_token_id) decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) # Some simple post-processing decoded_preds = [pred.strip() for pred in decoded_preds] decoded_labels = [[label.strip()] for label in decoded_labels] return decoded_preds, decoded_labels
from tqdm.auto import tqdm import torch progress_bar = tqdm(range(num_training_steps)) for epoch in range(num_train_epochs): # Training model.train() for batch in train_dataloader: outputs = model(**batch) loss = outputs.loss accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() progress_bar.update(1) # Evaluation model.eval() for batch in tqdm(eval_dataloader): with torch.no_grad(): generated_tokens = accelerator.unwrap_model(model).generate( batch["input_ids"], attention_mask=batch["attention_mask"], max_length=128, ) labels = batch["labels"] # Necessary to pad predictions and labels for being gathered generated_tokens = accelerator.pad_across_processes( generated_tokens, dim=1, pad_index=tokenizer.pad_token_id ) labels = accelerator.pad_across_processes(labels, dim=1, pad_index=-100) predictions_gathered = accelerator.gather(generated_tokens) labels_gathered = accelerator.gather(labels) decoded_preds, decoded_labels = postprocess(predictions_gathered, labels_gathered) metric.add_batch(predictions=decoded_preds, references=decoded_labels) results = metric.compute() print(f"epoch {epoch}, BLEU score: {results['score']:.2f}") # Save and upload accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained(output_dir, save_function=accelerator.save) if accelerator.is_main_process: tokenizer.save_pretrained(output_dir) repo.push_to_hub( commit_message=f"Training in progress epoch {epoch}", blocking=False )
epoch 0, BLEU score: 53.47 epoch 1, BLEU score: 54.24 epoch 2, BLEU score: 54.44
from transformers import pipeline # Replace this with your own checkpoint model_checkpoint = "huggingface-course/marian-finetuned-kde4-en-to-fr" translator = pipeline("translation", model=model_checkpoint) translator("Default to expanded threads")
[{'translation_text': 'Par défaut, développer les fils de discussion'}]
translator( "Unable to import %1 using the OFX importer plugin. This file is not the correct format." )
[{'translation_text': "Impossible d'importer %1 en utilisant le module externe d'importation OFX. Ce fichier n'est pas le bon format."}]