CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
huggingface

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

GitHub Repository: huggingface/notebooks
Path: blob/main/course/fa/chapter3/section2_tf.ipynb
Views: 2548
Kernel: Unknown Kernel

پردازش داده (TensorFlow)

Install the Transformers, Datasets, and Evaluate libraries to run this notebook.

!pip install datasets evaluate transformers[sentencepiece]
import tensorflow as tf import numpy as np from transformers import AutoTokenizer, TFAutoModelForSequenceClassification # Same as before checkpoint = "bert-base-uncased" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = TFAutoModelForSequenceClassification.from_pretrained(checkpoint) sequences = [ "I've been waiting for a HuggingFace course my whole life.", "This course is amazing!", ] batch = dict(tokenizer(sequences, padding=True, truncation=True, return_tensors="tf")) # This is new model.compile(optimizer="adam", loss="sparse_categorical_crossentropy") labels = tf.convert_to_tensor([1, 1]) model.train_on_batch(batch, labels)
from datasets import load_dataset raw_datasets = load_dataset("glue", "mrpc") raw_datasets
DatasetDict({ train: Dataset({ features: ['sentence1', 'sentence2', 'label', 'idx'], num_rows: 3668 }) validation: Dataset({ features: ['sentence1', 'sentence2', 'label', 'idx'], num_rows: 408 }) test: Dataset({ features: ['sentence1', 'sentence2', 'label', 'idx'], num_rows: 1725 }) })
raw_train_dataset = raw_datasets["train"] raw_train_dataset[0]
{'idx': 0, 'label': 1, 'sentence1': 'Amrozi accused his brother , whom he called " the witness " , of deliberately distorting his evidence .', 'sentence2': 'Referring to him as only " the witness " , Amrozi accused his brother of deliberately distorting his evidence .'}
raw_train_dataset.features
{'sentence1': Value(dtype='string', id=None), 'sentence2': Value(dtype='string', id=None), 'label': ClassLabel(num_classes=2, names=['not_equivalent', 'equivalent'], names_file=None, id=None), 'idx': Value(dtype='int32', id=None)}
from transformers import AutoTokenizer checkpoint = "bert-base-uncased" tokenizer = AutoTokenizer.from_pretrained(checkpoint) tokenized_sentences_1 = tokenizer(raw_datasets["train"]["sentence1"]) tokenized_sentences_2 = tokenizer(raw_datasets["train"]["sentence2"])
inputs = tokenizer("This is the first sentence.", "This is the second one.") inputs
{ 'input_ids': [101, 2023, 2003, 1996, 2034, 6251, 1012, 102, 2023, 2003, 1996, 2117, 2028, 1012, 102], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] }
tokenizer.convert_ids_to_tokens(inputs["input_ids"])
['[CLS]', 'this', 'is', 'the', 'first', 'sentence', '.', '[SEP]', 'this', 'is', 'the', 'second', 'one', '.', '[SEP]']
tokenized_dataset = tokenizer( raw_datasets["train"]["sentence1"], raw_datasets["train"]["sentence2"], padding=True, truncation=True, )
def tokenize_function(example): return tokenizer(example["sentence1"], example["sentence2"], truncation=True)
tokenized_datasets = raw_datasets.map(tokenize_function, batched=True) tokenized_datasets
DatasetDict({ train: Dataset({ features: ['attention_mask', 'idx', 'input_ids', 'label', 'sentence1', 'sentence2', 'token_type_ids'], num_rows: 3668 }) validation: Dataset({ features: ['attention_mask', 'idx', 'input_ids', 'label', 'sentence1', 'sentence2', 'token_type_ids'], num_rows: 408 }) test: Dataset({ features: ['attention_mask', 'idx', 'input_ids', 'label', 'sentence1', 'sentence2', 'token_type_ids'], num_rows: 1725 }) })
from transformers import DataCollatorWithPadding data_collator = DataCollatorWithPadding(tokenizer=tokenizer, return_tensors="tf")
samples = tokenized_datasets["train"][:8] samples = {k: v for k, v in samples.items() if k not in ["idx", "sentence1", "sentence2"]} [len(x) for x in samples["input_ids"]]
[50, 59, 47, 67, 59, 50, 62, 32]
batch = data_collator(samples) {k: v.shape for k, v in batch.items()}
{'attention_mask': TensorShape([8, 67]), 'input_ids': TensorShape([8, 67]), 'token_type_ids': TensorShape([8, 67]), 'labels': TensorShape([8])}
tf_train_dataset = tokenized_datasets["train"].to_tf_dataset( columns=["attention_mask", "input_ids", "token_type_ids"], label_cols=["labels"], shuffle=True, collate_fn=data_collator, batch_size=8, ) tf_validation_dataset = tokenized_datasets["validation"].to_tf_dataset( columns=["attention_mask", "input_ids", "token_type_ids"], label_cols=["labels"], shuffle=False, collate_fn=data_collator, batch_size=8, )