CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
huggingface

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

GitHub Repository: huggingface/notebooks
Path: blob/main/course/pt/chapter2/section5_pt.ipynb
Views: 2548
Kernel: Unknown Kernel

Tratando sequências múltiplas (PyTorch)

Install the Transformers, Datasets, and Evaluate libraries to run this notebook.

!pip install datasets evaluate transformers[sentencepiece]
import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification checkpoint = "distilbert-base-uncased-finetuned-sst-2-english" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForSequenceClassification.from_pretrained(checkpoint) sequence = "I've been waiting for a HuggingFace course my whole life." tokens = tokenizer.tokenize(sequence) ids = tokenizer.convert_tokens_to_ids(tokens) input_ids = torch.tensor(ids) # This line will fail. model(input_ids)
IndexError: Dimension out of range (expected to be in range of [-1, 0], but got 1)
tokenized_inputs = tokenizer(sequence, return_tensors="pt") print(tokenized_inputs["input_ids"])
tensor([[ 101, 1045, 1005, 2310, 2042, 3403, 2005, 1037, 17662, 12172, 2607, 2026, 2878, 2166, 1012, 102]])
import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification checkpoint = "distilbert-base-uncased-finetuned-sst-2-english" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForSequenceClassification.from_pretrained(checkpoint) sequence = "I've been waiting for a HuggingFace course my whole life." tokens = tokenizer.tokenize(sequence) ids = tokenizer.convert_tokens_to_ids(tokens) input_ids = torch.tensor([ids]) print("Input IDs:", input_ids) output = model(input_ids) print("Logits:", output.logits)
Input IDs: [[ 1045, 1005, 2310, 2042, 3403, 2005, 1037, 17662, 12172, 2607, 2026, 2878, 2166, 1012]] Logits: [[-2.7276, 2.8789]]
batched_ids = [ [200, 200, 200], [200, 200] ]
padding_id = 100 batched_ids = [ [200, 200, 200], [200, 200, padding_id], ]
model = AutoModelForSequenceClassification.from_pretrained(checkpoint) sequence1_ids = [[200, 200, 200]] sequence2_ids = [[200, 200]] batched_ids = [ [200, 200, 200], [200, 200, tokenizer.pad_token_id], ] print(model(torch.tensor(sequence1_ids)).logits) print(model(torch.tensor(sequence2_ids)).logits) print(model(torch.tensor(batched_ids)).logits)
tensor([[ 1.5694, -1.3895]], grad_fn=<AddmmBackward>) tensor([[ 0.5803, -0.4125]], grad_fn=<AddmmBackward>) tensor([[ 1.5694, -1.3895], [ 1.3373, -1.2163]], grad_fn=<AddmmBackward>)
batched_ids = [ [200, 200, 200], [200, 200, tokenizer.pad_token_id], ] attention_mask = [ [1, 1, 1], [1, 1, 0], ] outputs = model(torch.tensor(batched_ids), attention_mask=torch.tensor(attention_mask)) print(outputs.logits)
tensor([[ 1.5694, -1.3895], [ 0.5803, -0.4125]], grad_fn=<AddmmBackward>)
sequence = sequence[:max_sequence_length]