CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
huggingface

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

GitHub Repository: huggingface/notebooks
Path: blob/main/datasets-server_doc/en/quick_start.ipynb
Views: 2542
Kernel: Unknown Kernel

Quickstart

In this quickstart, you'll learn how to use the Datasets Server's REST API to:

  • Check whether a dataset on the Hub is functional.

  • Return the configuration and splits of a dataset.

  • Preview the first 100 rows of a dataset.

  • Download slices of rows of a dataset.

  • Search a word in a dataset.

  • Filter rows based on a query string.

  • Access the dataset as parquet files.

  • Get the dataset size (in number of rows or bytes).

  • Get statistics about the dataset.

API endpoints

Each feature is served through an endpoint summarized in the table below:

EndpointMethodDescriptionQuery parameters
/is-validGETCheck whether a specific dataset is valid.dataset: name of the dataset
/splitsGETGet the list of configurations and splits of a dataset.dataset: name of the dataset
/first-rowsGETGet the first rows of a dataset split.- dataset: name of the dataset
- config: name of the config
- split: name of the split
/rowsGETGet a slice of rows of a dataset split.- dataset: name of the dataset
- config: name of the config
- split: name of the split
- offset: offset of the slice
- length: length of the slice (maximum 100)
/searchGETSearch text in a dataset split.- dataset: name of the dataset
- config: name of the config
- split: name of the split
- query: text to search for
/filterGETFilter rows in a dataset split.- dataset: name of the dataset
- config: name of the config
- split: name of the split
- where: filter query
- offset: offset of the slice
- length: length of the slice (maximum 100)
/parquetGETGet the list of parquet files of a dataset.dataset: name of the dataset
/sizeGETGet the size of a dataset.dataset: name of the dataset
/statisticsGETGet statistics about a dataset split.- dataset: name of the dataset
- config: name of the config
- split: name of the split

There is no installation or setup required to use Datasets Server.

Feel free to try out the API in Postman, ReDoc or RapidAPI. This quickstart will show you how to query the endpoints programmatically.

The base URL of the REST API is:

https://datasets-server.huggingface.co

Gated datasets

For gated datasets, you'll need to provide your user token in headers of your query. Otherwise, you'll get an error message to retry with authentication.

[removed] [removed]
import requests headers = {"Authorization": f"Bearer {API_TOKEN}"} API_URL = "https://datasets-server.huggingface.co/is-valid?dataset=mozilla-foundation/common_voice_10_0" def query(): response = requests.get(API_URL, headers=headers) return response.json() data = query()

You'll see the following error if you're trying to access a gated dataset without providing your user token:

print(data) {'error': 'The dataset does not exist, or is not accessible without authentication (private or gated). Please check the spelling of the dataset name or retry with authentication.'}

Check dataset validity

To check whether a specific dataset is valid, for example, Rotten Tomatoes, use the /is-valid endpoint:

[removed] [removed]
import requests API_URL = "https://datasets-server.huggingface.co/is-valid?dataset=rotten_tomatoes" def query(): response = requests.get(API_URL) return response.json() data = query()

This returns whether the dataset provides a preview (see /first-rows), the viewer (see /rows), the search (see /search) and the filter (see /filter):

{ "preview": true, "viewer": true, "search": true, "filter": true }

List configurations and splits

The /splits endpoint returns a JSON list of the splits in a dataset:

[removed] [removed]
import requests API_URL = "https://datasets-server.huggingface.co/splits?dataset=rotten_tomatoes" def query(): response = requests.get(API_URL) return response.json() data = query()

This returns the available configuration and splits in the dataset:

{ "splits": [ { "dataset": "rotten_tomatoes", "config": "default", "split": "train" }, { "dataset": "rotten_tomatoes", "config": "default", "split": "validation" }, { "dataset": "rotten_tomatoes", "config": "default", "split": "test" } ], "pending": [], "failed": [] }

Preview a dataset

The /first-rows endpoint returns a JSON list of the first 100 rows of a dataset. It also returns the types of data features ("columns" data types). You should specify the dataset name, configuration name (you can find out the configuration name from the /splits endpoint), and split name of the dataset you'd like to preview:

[removed] [removed]
import requests API_URL = "https://datasets-server.huggingface.co/first-rows?dataset=rotten_tomatoes&config=default&split=train" def query(): response = requests.get(API_URL) return response.json() data = query()

This returns the first 100 rows of the dataset:

{ "dataset": "rotten_tomatoes", "config": "default", "split": "train", "features": [ { "feature_idx": 0, "name": "text", "type": { "dtype": "string", "_type": "Value" } }, { "feature_idx": 1, "name": "label", "type": { "names": ["neg", "pos"], "_type": "ClassLabel" } } ], "rows": [ { "row_idx": 0, "row": { "text": "the rock is destined to be the 21st century's new \" conan \" and that he's going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .", "label": 1 }, "truncated_cells": [] }, { "row_idx": 1, "row": { "text": "the gorgeously elaborate continuation of \" the lord of the rings \" trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson's expanded vision of j . r . r . tolkien's middle-earth .", "label": 1 }, "truncated_cells": [] }, ..., ... ] }

Download slices of a dataset

The /rows endpoint returns a JSON list of a slice of rows of a dataset at any given location (offset). It also returns the types of data features ("columns" data types). You should specify the dataset name, configuration name (you can find out the configuration name from the /splits endpoint), the split name and the offset and length of the slice you'd like to download:

[removed] [removed]
import requests API_URL = "https://datasets-server.huggingface.co/rows?dataset=rotten_tomatoes&config=default&split=train&offset=150&length=10" def query(): response = requests.get(API_URL) return response.json() data = query()

You can download slices of 100 rows maximum at a time.

The response looks like:

{ "features": [ { "feature_idx": 0, "name": "text", "type": { "dtype": "string", "_type": "Value" } }, { "feature_idx": 1, "name": "label", "type": { "names": ["neg", "pos"], "_type": "ClassLabel" } } ], "rows": [ { "row_idx": 150, "row": { "text": "enormously likable , partly because it is aware of its own grasp of the absurd .", "label": 1 }, "truncated_cells": [] }, { "row_idx": 151, "row": { "text": "here's a british flick gleefully unconcerned with plausibility , yet just as determined to entertain you .", "label": 1 }, "truncated_cells": [] }, ..., ... ], "num_rows_total": 8530, "num_rows_per_page": 100, "partial": false }

Search text in a dataset

The /search endpoint returns a JSON list of a slice of rows of a dataset that match a text query. The text is searched in the columns of type string, even if the values are nested in a dictionary. It also returns the types of data features ("columns" data types). The response format is the same as the /rows endpoint. You should specify the dataset name, configuration name (you can find out the configuration name from the /splits endpoint), the split name and the search query you'd like to find in the text columns:

[removed] [removed]
import requests API_URL = "https://datasets-server.huggingface.co/search?dataset=rotten_tomatoes&config=default&split=train&query=cat" def query(): response = requests.get(API_URL) return response.json() data = query()

You can get slices of 100 rows maximum at a time, and you can ask for other slices using the offset and length parameters, as for the /rows endpoint.

The response looks like:

{ "features": [ { "feature_idx": 0, "name": "text", "type": { "dtype": "string", "_type": "Value" } }, { "feature_idx": 1, "name": "label", "type": { "dtype": "int64", "_type": "Value" } } ], "rows": [ { "row_idx": 9, "row": { "text": "take care of my cat offers a refreshingly different slice of asian cinema .", "label": 1 }, "truncated_cells": [] }, { "row_idx": 472, "row": { "text": "[ \" take care of my cat \" ] is an honestly nice little film that takes us on an examination of young adult life in urban south korea through the hearts and minds of the five principals .", "label": 1 }, "truncated_cells": [] }, ..., ... ], "num_rows_total": 12, "num_rows_per_page": 100, "partial": false }

Access Parquet files

Datasets Server converts every dataset on the Hub to the Parquet format. The /parquet endpoint returns a JSON list of the Parquet URLs for a dataset:

[removed] [removed]
import requests API_URL = "https://datasets-server.huggingface.co/parquet?dataset=rotten_tomatoes" def query(): response = requests.get(API_URL) return response.json() data = query()

This returns a URL to the Parquet file for each split:

{ "parquet_files": [ { "dataset": "rotten_tomatoes", "config": "default", "split": "test", "url": "https://huggingface.co/datasets/rotten_tomatoes/resolve/refs%2Fconvert%2Fparquet/default/test/0000.parquet", "filename": "0000.parquet", "size": 92206 }, { "dataset": "rotten_tomatoes", "config": "default", "split": "train", "url": "https://huggingface.co/datasets/rotten_tomatoes/resolve/refs%2Fconvert%2Fparquet/default/train/0000.parquet", "filename": "0000.parquet", "size": 698845 }, { "dataset": "rotten_tomatoes", "config": "default", "split": "validation", "url": "https://huggingface.co/datasets/rotten_tomatoes/resolve/refs%2Fconvert%2Fparquet/default/validation/0000.parquet", "filename": "0000.parquet", "size": 90001 } ], "pending": [], "failed": [], "partial": false }

Get the size of the dataset

The /size endpoint returns a JSON with the size (number of rows and size in bytes) of the dataset, and for every configuration and split:

[removed] [removed]
import requests API_URL = "https://datasets-server.huggingface.co/size?dataset=rotten_tomatoes" def query(): response = requests.get(API_URL) return response.json() data = query() ```` </python> <js> ```js import fetch from "node-fetch"; async function query(data) { const response = await fetch( "https://datasets-server.huggingface.co/size?dataset=rotten_tomatoes", { method: "GET" } ); const result = await response.json(); return result; } query().then((response) => { console.log(JSON.stringify(response)); });

This returns the size of the dataset, and for every configuration and split:

{ "size": { "dataset": { "dataset": "rotten_tomatoes", "num_bytes_original_files": 487770, "num_bytes_parquet_files": 881052, "num_bytes_memory": 1345449, "num_rows": 10662 }, "configs": [ { "dataset": "rotten_tomatoes", "config": "default", "num_bytes_original_files": 487770, "num_bytes_parquet_files": 881052, "num_bytes_memory": 1345449, "num_rows": 10662, "num_columns": 2 } ], "splits": [ { "dataset": "rotten_tomatoes", "config": "default", "split": "train", "num_bytes_parquet_files": 698845, "num_bytes_memory": 1074806, "num_rows": 8530, "num_columns": 2 }, { "dataset": "rotten_tomatoes", "config": "default", "split": "validation", "num_bytes_parquet_files": 90001, "num_bytes_memory": 134675, "num_rows": 1066, "num_columns": 2 }, { "dataset": "rotten_tomatoes", "config": "default", "split": "test", "num_bytes_parquet_files": 92206, "num_bytes_memory": 135968, "num_rows": 1066, "num_columns": 2 } ] }, "pending": [], "failed": [], "partial": false }