CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
huggingface

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

GitHub Repository: huggingface/notebooks
Path: blob/main/diffusers/reinforcement_learning_with_diffusers.ipynb
Views: 2535
Kernel: Python 3

Introduction

This notebook is designed to run inference on the Diffuser planning model for model-based RL. The notebook is modified from the authors' original. For those new to reinforcement learning, consider checking out the HuggingFace Reinforcement Learning Course for a primer.

Colab made by Nathan Lambert and Ben Glickenhaus.

diffusers_library

Installing Packages

apt-get install requirements

These requirements primarily pertain to install mujoco and run it in the colab. Source was inspired by this (fairly recent) demo.

# installations primiarly needed for Mujoco !apt-get install -y \ libgl1-mesa-dev \ libgl1-mesa-glx \ libglew-dev \ libosmesa6-dev \ software-properties-common !apt-get install -y patchelf
Reading package lists... Done Building dependency tree Reading state information... Done libglew-dev is already the newest version (2.0.0-5). libgl1-mesa-dev is already the newest version (20.0.8-0ubuntu1~18.04.1). libgl1-mesa-glx is already the newest version (20.0.8-0ubuntu1~18.04.1). libosmesa6-dev is already the newest version (20.0.8-0ubuntu1~18.04.1). software-properties-common is already the newest version (0.96.24.32.18). The following package was automatically installed and is no longer required: libnvidia-common-460 Use 'apt autoremove' to remove it. 0 upgraded, 0 newly installed, 0 to remove and 27 not upgraded. Reading package lists... Done Building dependency tree Reading state information... Done patchelf is already the newest version (0.9-1). The following package was automatically installed and is no longer required: libnvidia-common-460 Use 'apt autoremove' to remove it. 0 upgraded, 0 newly installed, 0 to remove and 27 not upgraded.

Install Diffusers

%cd /content # install latest HF diffusers !rm -rf /content/diffusers/ !git clone -b rl https://github.com/huggingface/diffusers.git !pip install -q /content/diffusers !pip install -q datasets transformers
/content Found existing installation: diffusers 0.5.0.dev0 Uninstalling diffusers-0.5.0.dev0: Successfully uninstalled diffusers-0.5.0.dev0 Cloning into 'diffusers'... remote: Enumerating objects: 10356, done. remote: Counting objects: 100% (502/502), done. remote: Compressing objects: 100% (251/251), done. remote: Total 10356 (delta 277), reused 384 (delta 201), pack-reused 9854 Receiving objects: 100% (10356/10356), 7.81 MiB | 17.77 MiB/s, done. Resolving deltas: 100% (6885/6885), done. DEPRECATION: A future pip version will change local packages to be built in-place without first copying to a temporary directory. We recommend you use --use-feature=in-tree-build to test your packages with this new behavior before it becomes the default. pip 21.3 will remove support for this functionality. You can find discussion regarding this at https://github.com/pypa/pip/issues/7555. Installing build dependencies ... done Getting requirements to build wheel ... done Preparing wheel metadata ... done Building wheel for diffusers (PEP 517) ... done

pip install requirements

# primarily RL-sepcific requirements %pip install -f https://download.pytorch.org/whl/torch_stable.html \ free-mujoco-py \ einops \ gym==0.24.1 \ protobuf==3.20.1 \ git+https://github.com/rail-berkeley/d4rl.git \ mediapy \ Pillow==9.0.0
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/ Looking in links: https://download.pytorch.org/whl/torch_stable.html Collecting git+https://github.com/rail-berkeley/d4rl.git Cloning https://github.com/rail-berkeley/d4rl.git to /tmp/pip-req-build-7j2y8u6t Running command git clone -q https://github.com/rail-berkeley/d4rl.git /tmp/pip-req-build-7j2y8u6t Requirement already satisfied: free-mujoco-py in /usr/local/lib/python3.7/dist-packages (2.1.6) Requirement already satisfied: einops in /usr/local/lib/python3.7/dist-packages (0.5.0) Requirement already satisfied: gym in /usr/local/lib/python3.7/dist-packages (0.24.1) Requirement already satisfied: protobuf==3.20.1 in /usr/local/lib/python3.7/dist-packages (3.20.1) Requirement already satisfied: mediapy in /usr/local/lib/python3.7/dist-packages (1.1.2) Requirement already satisfied: Pillow==9.0.0 in /usr/local/lib/python3.7/dist-packages (9.0.0) Collecting mjrl@ git+https://github.com/aravindr93/mjrl@master#egg=mjrl Cloning https://github.com/aravindr93/mjrl (to revision master) to /tmp/pip-install-g98wzheg/mjrl_0abe064c9aa541e98742a70535434798 Running command git clone -q https://github.com/aravindr93/mjrl /tmp/pip-install-g98wzheg/mjrl_0abe064c9aa541e98742a70535434798 Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from D4RL==1.1) (1.21.6) Requirement already satisfied: mujoco_py in /usr/local/lib/python3.7/dist-packages (from D4RL==1.1) (2.1.2.14) Requirement already satisfied: pybullet in /usr/local/lib/python3.7/dist-packages (from D4RL==1.1) (3.2.5) Requirement already satisfied: h5py in /usr/local/lib/python3.7/dist-packages (from D4RL==1.1) (3.1.0) Requirement already satisfied: termcolor in /usr/local/lib/python3.7/dist-packages (from D4RL==1.1) (2.0.1) Requirement already satisfied: click in /usr/local/lib/python3.7/dist-packages (from D4RL==1.1) (7.1.2) Requirement already satisfied: dm_control>=1.0.3 in /usr/local/lib/python3.7/dist-packages (from D4RL==1.1) (1.0.8) Requirement already satisfied: gym-notices>=0.0.4 in /usr/local/lib/python3.7/dist-packages (from gym) (0.0.8) Requirement already satisfied: cloudpickle>=1.2.0 in /usr/local/lib/python3.7/dist-packages (from gym) (1.5.0) Requirement already satisfied: importlib-metadata>=4.8.0 in /usr/local/lib/python3.7/dist-packages (from gym) (4.13.0) Requirement already satisfied: absl-py>=0.7.0 in /usr/local/lib/python3.7/dist-packages (from dm_control>=1.0.3->D4RL==1.1) (1.3.0) Requirement already satisfied: lxml in /usr/local/lib/python3.7/dist-packages (from dm_control>=1.0.3->D4RL==1.1) (4.9.1) Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from dm_control>=1.0.3->D4RL==1.1) (2.23.0) Requirement already satisfied: tqdm in /usr/local/lib/python3.7/dist-packages (from dm_control>=1.0.3->D4RL==1.1) (4.64.1) Requirement already satisfied: pyparsing<3.0.0 in /usr/local/lib/python3.7/dist-packages (from dm_control>=1.0.3->D4RL==1.1) (2.4.7) Requirement already satisfied: mujoco>=2.3.0 in /usr/local/lib/python3.7/dist-packages (from dm_control>=1.0.3->D4RL==1.1) (2.3.0) Requirement already satisfied: pyopengl>=3.1.4 in /usr/local/lib/python3.7/dist-packages (from dm_control>=1.0.3->D4RL==1.1) (3.1.6) Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (from dm_control>=1.0.3->D4RL==1.1) (1.7.3) Requirement already satisfied: dm-tree!=0.1.2 in /usr/local/lib/python3.7/dist-packages (from dm_control>=1.0.3->D4RL==1.1) (0.1.7) Requirement already satisfied: glfw in /usr/local/lib/python3.7/dist-packages (from dm_control>=1.0.3->D4RL==1.1) (1.12.0) Requirement already satisfied: dm-env in /usr/local/lib/python3.7/dist-packages (from dm_control>=1.0.3->D4RL==1.1) (1.5) Requirement already satisfied: labmaze in /usr/local/lib/python3.7/dist-packages (from dm_control>=1.0.3->D4RL==1.1) (1.0.5) Requirement already satisfied: setuptools!=50.0.0 in /usr/local/lib/python3.7/dist-packages (from dm_control>=1.0.3->D4RL==1.1) (57.4.0) Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata>=4.8.0->gym) (3.9.0) Requirement already satisfied: typing-extensions>=3.6.4 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata>=4.8.0->gym) (4.1.1) Requirement already satisfied: Cython<0.30.0,>=0.29.24 in /usr/local/lib/python3.7/dist-packages (from free-mujoco-py) (0.29.32) Requirement already satisfied: cffi<2.0.0,>=1.15.0 in /usr/local/lib/python3.7/dist-packages (from free-mujoco-py) (1.15.1) Requirement already satisfied: fasteners==0.15 in /usr/local/lib/python3.7/dist-packages (from free-mujoco-py) (0.15) Requirement already satisfied: imageio<3.0.0,>=2.9.0 in /usr/local/lib/python3.7/dist-packages (from free-mujoco-py) (2.9.0) Requirement already satisfied: monotonic>=0.1 in /usr/local/lib/python3.7/dist-packages (from fasteners==0.15->free-mujoco-py) (1.6) Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from fasteners==0.15->free-mujoco-py) (1.15.0) Requirement already satisfied: pycparser in /usr/local/lib/python3.7/dist-packages (from cffi<2.0.0,>=1.15.0->free-mujoco-py) (2.21) Requirement already satisfied: matplotlib in /usr/local/lib/python3.7/dist-packages (from mediapy) (3.2.2) Requirement already satisfied: ipython in /usr/local/lib/python3.7/dist-packages (from mediapy) (7.9.0) Requirement already satisfied: cached-property in /usr/local/lib/python3.7/dist-packages (from h5py->D4RL==1.1) (1.5.2) Requirement already satisfied: traitlets>=4.2 in /usr/local/lib/python3.7/dist-packages (from ipython->mediapy) (5.1.1) Requirement already satisfied: pickleshare in /usr/local/lib/python3.7/dist-packages (from ipython->mediapy) (0.7.5) Requirement already satisfied: backcall in /usr/local/lib/python3.7/dist-packages (from ipython->mediapy) (0.2.0) Requirement already satisfied: jedi>=0.10 in /usr/local/lib/python3.7/dist-packages (from ipython->mediapy) (0.18.1) Requirement already satisfied: pexpect in /usr/local/lib/python3.7/dist-packages (from ipython->mediapy) (4.8.0) Requirement already satisfied: pygments in /usr/local/lib/python3.7/dist-packages (from ipython->mediapy) (2.6.1) Requirement already satisfied: prompt-toolkit<2.1.0,>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from ipython->mediapy) (2.0.10) Requirement already satisfied: decorator in /usr/local/lib/python3.7/dist-packages (from ipython->mediapy) (4.4.2) Requirement already satisfied: parso<0.9.0,>=0.8.0 in /usr/local/lib/python3.7/dist-packages (from jedi>=0.10->ipython->mediapy) (0.8.3) Requirement already satisfied: wcwidth in /usr/local/lib/python3.7/dist-packages (from prompt-toolkit<2.1.0,>=2.0.0->ipython->mediapy) (0.2.5) Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages (from matplotlib->mediapy) (0.11.0) Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->mediapy) (2.8.2) Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->mediapy) (1.4.4) Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.7/dist-packages (from pexpect->ipython->mediapy) (0.7.0) Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests->dm_control>=1.0.3->D4RL==1.1) (2.10) Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests->dm_control>=1.0.3->D4RL==1.1) (3.0.4) Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests->dm_control>=1.0.3->D4RL==1.1) (1.25.11) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests->dm_control>=1.0.3->D4RL==1.1) (2022.9.24)

Import D4RL to initialize Mujoco

Mujoco is a physics simulator used extensively in reinforcement learning research. Here, we import D4RL (a library of datasets and environments for Offline RL), which results in the building of Mujoco.

## cythonize mujoco-py at first import import d4rl
Warning: Gym version v0.24.1 has a number of critical issues with `gym.make` such that environment observation and action spaces are incorrectly evaluated, raising incorrect errors and warning . It is recommend to downgrading to v0.23.1 or upgrading to v0.25.1 Warning: Flow failed to import. Set the environment variable D4RL_SUPPRESS_IMPORT_ERROR=1 to suppress this message. No module named 'flow' Warning: CARLA failed to import. Set the environment variable D4RL_SUPPRESS_IMPORT_ERROR=1 to suppress this message. No module named 'carla' /usr/local/lib/python3.7/dist-packages/gym/envs/registration.py:416: UserWarning: WARN: The `registry.env_specs` property along with `EnvSpecTree` is deprecated. Please use `registry` directly as a dictionary instead. "The `registry.env_specs` property along with `EnvSpecTree` is deprecated. Please use `registry` directly as a dictionary instead."

Environment & Model Setup

In this section, we will create the environment, handle the data, and run the diffusion model.

Imports

import torch import tqdm import numpy as np import gym

Create environment

This colab is designed to run with pretrained models from the hopper environment. As more models are trained, this can be extended.

env_name = "hopper-medium-v2" env = gym.make(env_name) data = env.get_dataset() # dataset is only used for normalization in this colab
/usr/local/lib/python3.7/dist-packages/gym/envs/mujoco/mujoco_env.py:47: UserWarning: WARN: This version of the mujoco environments depends on the mujoco-py bindings, which are no longer maintained and may stop working. Please upgrade to the v4 versions of the environments (which depend on the mujoco python bindings instead), unless you are trying to precisely replicate previous works). "This version of the mujoco environments depends " /usr/local/lib/python3.7/dist-packages/gym/spaces/box.py:112: UserWarning: WARN: Box bound precision lowered by casting to float32 logger.warn(f"Box bound precision lowered by casting to {self.dtype}") /usr/local/lib/python3.7/dist-packages/gym/utils/passive_env_checker.py:70: UserWarning: WARN: Agent's minimum action space value is -infinity. This is probably too low. "Agent's minimum action space value is -infinity. This is probably too low." /usr/local/lib/python3.7/dist-packages/gym/utils/passive_env_checker.py:74: UserWarning: WARN: Agent's maximum action space value is infinity. This is probably too high "Agent's maximum action space value is infinity. This is probably too high" /usr/local/lib/python3.7/dist-packages/gym/utils/passive_env_checker.py:98: UserWarning: WARN: We recommend you to use a symmetric and normalized Box action space (range=[-1, 1]) https://stable-baselines3.readthedocs.io/en/master/guide/rl_tips.html "We recommend you to use a symmetric and normalized Box action space (range=[-1, 1]) " load datafile: 19%|█▉ | 4/21 [00:00<00:03, 5.38it/s]/usr/local/lib/python3.7/dist-packages/h5py/_hl/dataset.py:767: DeprecationWarning: Passing None into shape arguments as an alias for () is deprecated. arr = numpy.ndarray(selection.mshape, dtype=new_dtype) load datafile: 100%|██████████| 21/21 [00:01<00:00, 15.70it/s]

Define constants

# Cuda settings for colab torch.cuda.get_device_name(0) DEVICE = 'cuda:0' DTYPE = torch.float # diffusion model settings n_samples = 4 # number of trajectories planned via diffusion horizon = 128 # length of sampled trajectories state_dim = env.observation_space.shape[0] action_dim = env.action_space.shape[0] num_inference_steps = 20 # number of difusion steps

Helper functions

  • normalize scales the state values corresponding to the training data-set in D4RL,

  • de_normalize unscales the data for correct rendering,

  • to_torch handles casting to torch for both numpy arrays and dicts (used for conditionning the model, see reset_x0).

def normalize(x_in, data, key): means = data[key].mean(axis=0) stds = data[key].std(axis=0) return (x_in - means) / stds def de_normalize(x_in, data, key): means = data[key].mean(axis=0) stds = data[key].std(axis=0) return x_in * stds + means def to_torch(x_in, dtype=None, device=None): dtype = dtype or DTYPE device = device or DEVICE if type(x_in) is dict: return {k: to_torch(v, dtype, device) for k, v in x_in.items()} elif torch.is_tensor(x_in): return x_in.to(device).type(dtype) return torch.tensor(x_in, dtype=dtype, device=device)

Sample env. initial state

## Can set environment seed for debugging # torch.manual_seed(0) # np.random.seed(0) # env.seed(1996) obs = env.reset() obs_raw = obs # normalize observations for forward passes obs = normalize(obs, data, 'observations')

Run the Diffusion Process -- from Scratch

Initialize model

In this section, we create a scheduler and load a pretrained model from the Hub. An important detail in the RL application space is to save conditions which will allow the model to optimize trajectories only from the current state (which is cruical to making decisions!).

from diffusers import DDPMScheduler, UNet1DModel # Two generators for different parts of the diffusion loop to work in colab generator = torch.Generator(device='cuda') generator_cpu = torch.Generator(device='cpu') scheduler = DDPMScheduler(num_train_timesteps=100,beta_schedule="squaredcos_cap_v2") # The horizion represents the length of trajectories used in training. network = UNet1DModel.from_pretrained("bglick13/hopper-medium-v2-value-function-hor32", subfolder="unet").to(device=DEVICE)

Planning helper function

reset_x0 is used to constrain the diffusion process to trajectories starting at the current state of the agent. Without this, the diffusion process would generate arbitrary high-reward trajectories, rather than trajectories beginning at the current state.

def reset_x0(x_in, cond, act_dim): for key, val in cond.items(): x_in[:, key, act_dim:] = val.clone() return x_in

Setup for denoising

conditions is the variable used to hold the first state of the planned trajectories to the current state (it is passed into reset_x0).

## add a batch dimension and repeat for multiple samples ## [ observation_dim ] --> [ n_samples x observation_dim ] obs = obs[None].repeat(n_samples, axis=0) conditions = { 0: to_torch(obs, device=DEVICE) } # constants for inference batch_size = len(conditions[0]) shape = (batch_size, horizon, state_dim+action_dim)

Sample initial noise

# sample random initial noise vector x1 = torch.randn(shape, device=DEVICE, generator=generator) # this model is conditioned from an initial state, so you will see this function # multiple times to change the initial state of generated data to the state # generated via env.reset() above or env.step() below x = reset_x0(x1, conditions, action_dim) # convert a np observation to torch for model forward pass x = to_torch(x)

Generate trajectories

The diffusion process for trajectories has 4 central components:

  1. sampling an predicted original sample from the model (note that this model directly predicts the sample, rather than the error term epsilon used in many diffusion models),

  2. use the scheduler to predict the sample at the previous timestep,

  3. [optional] add posterior noise to the sample,

  4. condition the trajectory to constrain the initial state.

eta = 1.0 # noise factor for sampling reconstructed state # run the diffusion process # for i in tqdm.tqdm(reversed(range(num_inference_steps)), total=num_inference_steps): for i in tqdm.tqdm(scheduler.timesteps): # create batch of timesteps to pass into model timesteps = torch.full((batch_size,), i, device=DEVICE, dtype=torch.long) # 1. generate prediction from model with torch.no_grad(): residual = network(x.permute(0, 2, 1), timesteps).sample residual = residual.permute(0, 2, 1) # needed to match model params to original # 2. use the model prediction to reconstruct an observation (de-noise) obs_reconstruct = scheduler.step(residual, i, x, predict_epsilon=False)["prev_sample"] # 3. [optional] add posterior noise to the sample if eta > 0: noise = torch.randn(obs_reconstruct.shape, generator=generator_cpu).to(obs_reconstruct.device) posterior_variance = scheduler._get_variance(i) # * noise # no noise when t == 0 # NOTE: original implementation missing sqrt on posterior_variance obs_reconstruct = obs_reconstruct + int(i>0) * (0.5 * posterior_variance) * eta* noise # MJ had as log var, exponentiated # 4. apply conditions to the trajectory obs_reconstruct_postcond = reset_x0(obs_reconstruct, conditions, action_dim) x = to_torch(obs_reconstruct_postcond)
100%|██████████| 100/100 [00:01<00:00, 78.56it/s]
x.shape
torch.Size([4, 128, 14])

Render the samples

Renderering Tools

Rendering from Mujoco is historically not easy. Here is a modified version from the original paper. Additionally, a TODO is to investigate this web-based viewer.

Video helpers
import os import mediapy as media def to_np(x_in): if torch.is_tensor(x_in): x_in = x_in.detach().cpu().numpy() return x_in # from MJ's Diffuser code # https://github.com/jannerm/diffuser/blob/76ae49ae85ba1c833bf78438faffdc63b8b4d55d/diffuser/utils/colab.py#L79 def mkdir(savepath): """ returns `True` iff `savepath` is created """ if not os.path.exists(savepath): os.makedirs(savepath) return True else: return False def show_sample(renderer, observations, filename='sample.mp4', savebase='/content/videos'): ''' observations : [ batch_size x horizon x observation_dim ] ''' mkdir(savebase) savepath = os.path.join(savebase, filename) images = [] for rollout in observations: ## [ horizon x height x width x channels ] img = renderer._renders(rollout, partial=True) images.append(img) ## [ horizon x height x (batch_size * width) x channels ] images = np.concatenate(images, axis=2) media.show_video(images, codec='h264', fps=60)
Renderer helpers

These functions involve setting the state of the environment and reading it out in a pixel form.

# Code adapted from Michael Janner # source: https://github.com/jannerm/diffuser/blob/main/diffuser/utils/rendering.py import mujoco_py as mjc def env_map(env_name): ''' map D4RL dataset names to custom fully-observed variants for rendering ''' if 'halfcheetah' in env_name: return 'HalfCheetahFullObs-v2' elif 'hopper' in env_name: return 'HopperFullObs-v2' elif 'walker2d' in env_name: return 'Walker2dFullObs-v2' else: return env_name def get_image_mask(img): background = (img == 255).all(axis=-1, keepdims=True) mask = ~background.repeat(3, axis=-1) return mask def atmost_2d(x): while x.ndim > 2: x = x.squeeze(0) return x def set_state(env, state): qpos_dim = env.sim.data.qpos.size qvel_dim = env.sim.data.qvel.size if not state.size == qpos_dim + qvel_dim: warnings.warn( f'[ utils/rendering ] Expected state of size {qpos_dim + qvel_dim}, ' f'but got state of size {state.size}') state = state[:qpos_dim + qvel_dim] env.set_state(state[:qpos_dim], state[qpos_dim:])
Rendering class

Use the previously defined helpers to programatically render pixel sequences from a trajectory of states. This class takes the re-scaled outputs of the diffusion process and visualizes them.

class MuJoCoRenderer: ''' default mujoco renderer ''' def __init__(self, env): if type(env) is str: env = env_map(env) self.env = gym.make(env) else: self.env = env ## - 1 because the envs in renderer are fully-observed ## @TODO : clean up self.observation_dim = np.prod(self.env.observation_space.shape) - 1 self.action_dim = np.prod(self.env.action_space.shape) try: self.viewer = mjc.MjRenderContextOffscreen(self.env.sim) except: print('[ utils/rendering ] Warning: could not initialize offscreen renderer') self.viewer = None def pad_observation(self, observation): state = np.concatenate([ np.zeros(1), observation, ]) return state def pad_observations(self, observations): qpos_dim = self.env.sim.data.qpos.size ## xpos is hidden xvel_dim = qpos_dim - 1 xvel = observations[:, xvel_dim] xpos = np.cumsum(xvel) * self.env.dt states = np.concatenate([ xpos[:,None], observations, ], axis=-1) return states def render(self, observation, dim=256, partial=False, qvel=True, render_kwargs=None, conditions=None): if type(dim) == int: dim = (dim, dim) if self.viewer is None: return np.zeros((*dim, 3), np.uint8) if render_kwargs is None: xpos = observation[0] if not partial else 0 render_kwargs = { 'trackbodyid': 2, 'distance': 3, 'lookat': [xpos, -0.5, 1], 'elevation': -20 } for key, val in render_kwargs.items(): if key == 'lookat': self.viewer.cam.lookat[:] = val[:] else: setattr(self.viewer.cam, key, val) if partial: state = self.pad_observation(observation) else: state = observation qpos_dim = self.env.sim.data.qpos.size if not qvel or state.shape[-1] == qpos_dim: qvel_dim = self.env.sim.data.qvel.size state = np.concatenate([state, np.zeros(qvel_dim)]) set_state(self.env, state) self.viewer.render(*dim) data = self.viewer.read_pixels(*dim, depth=False) data = data[::-1, :, :] return data def _renders(self, observations, **kwargs): images = [] for observation in observations: img = self.render(observation, **kwargs) images.append(img) return np.stack(images, axis=0) def renders(self, samples, partial=False, **kwargs): if partial: samples = self.pad_observations(samples) partial = False sample_images = self._renders(samples, partial=partial, **kwargs) composite = np.ones_like(sample_images[0]) * 255 for img in sample_images: mask = get_image_mask(img) composite[mask] = img[mask] return composite def __call__(self, *args, **kwargs): return self.renders(*args, **kwargs)

Show Plans

This section renders 4 trajectories chosen from the same initial state in the environment.

Initialize renderer class for the environment
render = MuJoCoRenderer(env)
Show the video

Show the states generated by the diffusion model in the real environment. Not that the actions are dropped from the data.

de_normalized = de_normalize(to_np(x[:,:,action_dim:]), data, 'observations') show_sample(render, de_normalized)

Run Value Guided Diffusion -- with Pipeline

In this section, we repeat the above code, but we use a pre-trained pipeline in Diffusers!

from diffusers import ValueGuidedRLPipeline
env_name = "hopper-medium-v2" env = gym.make(env_name) data = env.get_dataset() # dataset is only used for normalization in this colab render = MuJoCoRenderer(env)
/usr/local/lib/python3.7/dist-packages/gym/envs/mujoco/mujoco_env.py:47: UserWarning: WARN: This version of the mujoco environments depends on the mujoco-py bindings, which are no longer maintained and may stop working. Please upgrade to the v4 versions of the environments (which depend on the mujoco python bindings instead), unless you are trying to precisely replicate previous works). "This version of the mujoco environments depends " /usr/local/lib/python3.7/dist-packages/gym/spaces/box.py:112: UserWarning: WARN: Box bound precision lowered by casting to float32 logger.warn(f"Box bound precision lowered by casting to {self.dtype}") /usr/local/lib/python3.7/dist-packages/gym/utils/passive_env_checker.py:70: UserWarning: WARN: Agent's minimum action space value is -infinity. This is probably too low. "Agent's minimum action space value is -infinity. This is probably too low." /usr/local/lib/python3.7/dist-packages/gym/utils/passive_env_checker.py:74: UserWarning: WARN: Agent's maximum action space value is infinity. This is probably too high "Agent's maximum action space value is infinity. This is probably too high" /usr/local/lib/python3.7/dist-packages/gym/utils/passive_env_checker.py:98: UserWarning: WARN: We recommend you to use a symmetric and normalized Box action space (range=[-1, 1]) https://stable-baselines3.readthedocs.io/en/master/guide/rl_tips.html "We recommend you to use a symmetric and normalized Box action space (range=[-1, 1]) " load datafile: 19%|█▉ | 4/21 [00:00<00:03, 5.16it/s]/usr/local/lib/python3.7/dist-packages/h5py/_hl/dataset.py:767: DeprecationWarning: Passing None into shape arguments as an alias for () is deprecated. arr = numpy.ndarray(selection.mshape, dtype=new_dtype) load datafile: 100%|██████████| 21/21 [00:01<00:00, 15.05it/s]
state_dim = env.observation_space.shape[0] action_dim = env.action_space.shape[0] DEVICE = "cuda"

Load the pipeline!

pipeline = ValueGuidedRLPipeline.from_pretrained( "bglick13/hopper-medium-v2-value-function-hor32", env=env, )
The config attributes {'args': ['diffusers', 'DDPMScheduler'], 'kwargs': ['diffusers', 'PNDMScheduler']} were passed to ValueGuidedDiffuserPipeline, but are not expected and will be ignored. Please verify your model_index.json configuration file. load datafile: 100%|██████████| 21/21 [00:01<00:00, 13.65it/s]
env.seed(0) obs = env.reset() total_reward = 0 total_score = 0 T = 100 rollout = [obs.copy()] trajectories = [] y_maxes = [0] for t in tqdm.tqdm(range(T)): # normalize observations for forward passes denorm_actions = pipeline(obs, planning_horizon=32) # execute action in environment next_observation, reward, terminal, _ = env.step(denorm_actions) score = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:" f" {total_score}" ) # save observations for rendering rollout.append(next_observation.copy()) obs = next_observation
/usr/local/lib/python3.7/dist-packages/gym/core.py:201: DeprecationWarning: WARN: Function `env.seed(seed)` is marked as deprecated and will be removed in the future. Please use `env.reset(seed=seed)` instead. "Function `env.seed(seed)` is marked as deprecated and will be removed in the future. " /usr/local/lib/python3.7/dist-packages/gym/utils/passive_env_checker.py:217: UserWarning: WARN: Future gym versions will require that `Env.reset` can be passed a `seed` instead of using `Env.seed` for resetting the environment random number generator. "Future gym versions will require that `Env.reset` can be passed a `seed` instead of using `Env.seed` for resetting the environment random number generator. " /usr/local/lib/python3.7/dist-packages/gym/utils/passive_env_checker.py:229: UserWarning: WARN: Future gym versions will require that `Env.reset` can be passed `return_info` to return information from the environment resetting. "Future gym versions will require that `Env.reset` can be passed `return_info` to return information from the environment resetting." /usr/local/lib/python3.7/dist-packages/gym/utils/passive_env_checker.py:234: UserWarning: WARN: Future gym versions will require that `Env.reset` can be passed `options` to allow the environment initialisation to be passed additional information. "Future gym versions will require that `Env.reset` can be passed `options` to allow the environment initialisation to be passed additional information." 0%| | 0/100 [00:00<?, ?it/s] 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:13, 1.39it/s] 15%|█▌ | 3/20 [00:00<00:04, 4.17it/s] 25%|██▌ | 5/20 [00:01<00:02, 6.59it/s] 35%|███▌ | 7/20 [00:01<00:01, 8.64it/s] 45%|████▌ | 9/20 [00:01<00:01, 10.20it/s] 55%|█████▌ | 11/20 [00:01<00:00, 11.50it/s] 65%|██████▌ | 13/20 [00:01<00:00, 12.48it/s] 75%|███████▌ | 15/20 [00:01<00:00, 13.27it/s] 85%|████████▌ | 17/20 [00:01<00:00, 13.62it/s] 100%|██████████| 20/20 [00:02<00:00, 9.93it/s] 1%| | 1/100 [00:02<03:21, 2.03s/it]
Step: 0, Reward: 0.9613453417633487, Total Reward: 0.9613453417633487, Score: 0.006228869141685884, Total Score: 0.006228869141685884
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.76it/s] 20%|██ | 4/20 [00:00<00:01, 15.77it/s] 30%|███ | 6/20 [00:00<00:00, 15.71it/s] 40%|████ | 8/20 [00:00<00:00, 15.19it/s] 50%|█████ | 10/20 [00:00<00:00, 15.52it/s] 60%|██████ | 12/20 [00:00<00:00, 15.21it/s] 70%|███████ | 14/20 [00:00<00:00, 15.33it/s] 80%|████████ | 16/20 [00:01<00:00, 15.33it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.48it/s] 100%|██████████| 20/20 [00:01<00:00, 15.31it/s] 2%|▏ | 2/100 [00:03<02:38, 1.62s/it]
Step: 1, Reward: 0.9905865761281842, Total Reward: 1.951931917891533, Score: 0.006524252144941468, Total Score: 0.012753121286627353
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 16.27it/s] 20%|██ | 4/20 [00:00<00:01, 14.22it/s] 30%|███ | 6/20 [00:00<00:00, 14.68it/s] 40%|████ | 8/20 [00:00<00:00, 14.77it/s] 50%|█████ | 10/20 [00:00<00:00, 15.20it/s] 60%|██████ | 12/20 [00:00<00:00, 15.26it/s] 70%|███████ | 14/20 [00:00<00:00, 14.85it/s] 80%|████████ | 16/20 [00:01<00:00, 15.19it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.27it/s] 100%|██████████| 20/20 [00:01<00:00, 14.93it/s] 3%|▎ | 3/100 [00:04<02:25, 1.50s/it]
Step: 2, Reward: 1.09243849732667, Total Reward: 3.044370415218203, Score: 0.00682861981088834, Total Score: 0.019581741097515693
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.02it/s] 20%|██ | 4/20 [00:00<00:01, 14.26it/s] 30%|███ | 6/20 [00:00<00:00, 14.72it/s] 40%|████ | 8/20 [00:00<00:00, 14.73it/s] 50%|█████ | 10/20 [00:00<00:00, 14.49it/s] 60%|██████ | 12/20 [00:00<00:00, 14.61it/s] 70%|███████ | 14/20 [00:00<00:00, 14.49it/s] 80%|████████ | 16/20 [00:01<00:00, 14.08it/s] 90%|█████████ | 18/20 [00:01<00:00, 14.02it/s] 100%|██████████| 20/20 [00:01<00:00, 14.21it/s] 4%|▍ | 4/100 [00:06<02:21, 1.47s/it]
Step: 3, Reward: 1.1971688596663932, Total Reward: 4.241539274884596, Score: 0.007164282501696702, Total Score: 0.026746023599212396
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 14.14it/s] 20%|██ | 4/20 [00:00<00:01, 13.20it/s] 30%|███ | 6/20 [00:00<00:01, 13.67it/s] 40%|████ | 8/20 [00:00<00:00, 13.73it/s] 50%|█████ | 10/20 [00:00<00:00, 13.29it/s] 60%|██████ | 12/20 [00:00<00:00, 13.36it/s] 70%|███████ | 14/20 [00:01<00:00, 13.45it/s] 80%|████████ | 16/20 [00:01<00:00, 13.17it/s] 90%|█████████ | 18/20 [00:01<00:00, 12.93it/s] 100%|██████████| 20/20 [00:01<00:00, 13.21it/s] 5%|▌ | 5/100 [00:07<02:21, 1.49s/it]
Step: 4, Reward: 1.216392029159964, Total Reward: 5.4579313040445605, Score: 0.007532124647292049, Total Score: 0.03427814824650444
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 13.49it/s] 20%|██ | 4/20 [00:00<00:01, 12.85it/s] 30%|███ | 6/20 [00:00<00:01, 12.57it/s] 40%|████ | 8/20 [00:00<00:00, 12.54it/s] 50%|█████ | 10/20 [00:00<00:00, 12.54it/s] 60%|██████ | 12/20 [00:00<00:00, 12.67it/s] 70%|███████ | 14/20 [00:01<00:00, 12.66it/s] 80%|████████ | 16/20 [00:01<00:00, 12.56it/s] 90%|█████████ | 18/20 [00:01<00:00, 12.55it/s] 100%|██████████| 20/20 [00:01<00:00, 12.57it/s] 6%|▌ | 6/100 [00:09<02:24, 1.53s/it]
Step: 5, Reward: 1.1837624373676066, Total Reward: 6.641693741412167, Score: 0.007905873304616767, Total Score: 0.042184021551121206
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 13.02it/s] 20%|██ | 4/20 [00:00<00:01, 12.83it/s] 30%|███ | 6/20 [00:00<00:01, 12.89it/s] 40%|████ | 8/20 [00:00<00:00, 12.84it/s] 50%|█████ | 10/20 [00:00<00:00, 12.43it/s] 60%|██████ | 12/20 [00:00<00:00, 12.67it/s] 70%|███████ | 14/20 [00:01<00:00, 12.68it/s] 80%|████████ | 16/20 [00:01<00:00, 12.55it/s] 90%|█████████ | 18/20 [00:01<00:00, 12.85it/s] 100%|██████████| 20/20 [00:01<00:00, 12.76it/s] 7%|▋ | 7/100 [00:10<02:24, 1.55s/it]
Step: 6, Reward: 1.316867289864599, Total Reward: 7.9585610312767665, Score: 0.008269596192428782, Total Score: 0.05045361774354999
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 13.11it/s] 20%|██ | 4/20 [00:00<00:01, 14.07it/s] 30%|███ | 6/20 [00:00<00:00, 14.43it/s] 40%|████ | 8/20 [00:00<00:00, 14.70it/s] 50%|█████ | 10/20 [00:00<00:00, 15.02it/s] 60%|██████ | 12/20 [00:00<00:00, 15.08it/s] 70%|███████ | 14/20 [00:00<00:00, 15.09it/s] 80%|████████ | 16/20 [00:01<00:00, 15.20it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.00it/s] 100%|██████████| 20/20 [00:01<00:00, 14.78it/s] 8%|▊ | 8/100 [00:12<02:17, 1.50s/it]
Step: 7, Reward: 1.458532898214762, Total Reward: 9.417093929491529, Score: 0.00867421688186361, Total Score: 0.0591278346254136
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.47it/s] 20%|██ | 4/20 [00:00<00:01, 15.45it/s] 30%|███ | 6/20 [00:00<00:00, 15.04it/s] 40%|████ | 8/20 [00:00<00:00, 15.08it/s] 50%|█████ | 10/20 [00:00<00:00, 15.36it/s] 60%|██████ | 12/20 [00:00<00:00, 14.88it/s] 70%|███████ | 14/20 [00:00<00:00, 15.34it/s] 80%|████████ | 16/20 [00:01<00:00, 15.40it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.55it/s] 100%|██████████| 20/20 [00:01<00:00, 15.27it/s] 9%|▉ | 9/100 [00:13<02:11, 1.44s/it]
Step: 8, Reward: 1.5655737561538712, Total Reward: 10.9826676856454, Score: 0.009122365751063418, Total Score: 0.06825020037647701
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.68it/s] 20%|██ | 4/20 [00:00<00:01, 15.32it/s] 30%|███ | 6/20 [00:00<00:00, 15.33it/s] 40%|████ | 8/20 [00:00<00:00, 14.49it/s] 50%|█████ | 10/20 [00:00<00:00, 14.81it/s] 60%|██████ | 12/20 [00:00<00:00, 14.81it/s] 70%|███████ | 14/20 [00:00<00:00, 14.88it/s] 80%|████████ | 16/20 [00:01<00:00, 14.93it/s] 90%|█████████ | 18/20 [00:01<00:00, 14.73it/s] 100%|██████████| 20/20 [00:01<00:00, 14.82it/s] 10%|█ | 10/100 [00:14<02:07, 1.42s/it]
Step: 9, Reward: 1.6407680269786085, Total Reward: 12.623435712624008, Score: 0.009603403998008702, Total Score: 0.07785360437448571
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 14.32it/s] 20%|██ | 4/20 [00:00<00:01, 14.64it/s] 30%|███ | 6/20 [00:00<00:00, 14.61it/s] 40%|████ | 8/20 [00:00<00:00, 14.82it/s] 50%|█████ | 10/20 [00:00<00:00, 14.95it/s] 60%|██████ | 12/20 [00:00<00:00, 15.11it/s] 70%|███████ | 14/20 [00:00<00:00, 15.02it/s] 80%|████████ | 16/20 [00:01<00:00, 15.12it/s] 90%|█████████ | 18/20 [00:01<00:00, 14.38it/s] 100%|██████████| 20/20 [00:01<00:00, 14.64it/s] 11%|█ | 11/100 [00:16<02:05, 1.41s/it]
Step: 10, Reward: 1.7056611798297208, Total Reward: 14.329096892453729, Score: 0.010107546439231438, Total Score: 0.08796115081371715
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.00it/s] 20%|██ | 4/20 [00:00<00:01, 15.09it/s] 30%|███ | 6/20 [00:00<00:00, 14.94it/s] 40%|████ | 8/20 [00:00<00:00, 14.94it/s] 50%|█████ | 10/20 [00:00<00:00, 15.10it/s] 60%|██████ | 12/20 [00:00<00:00, 14.90it/s] 70%|███████ | 14/20 [00:00<00:00, 15.13it/s] 80%|████████ | 16/20 [00:01<00:00, 15.33it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.36it/s] 100%|██████████| 20/20 [00:01<00:00, 15.11it/s] 12%|█▏ | 12/100 [00:17<02:02, 1.39s/it]
Step: 11, Reward: 1.7747508738212663, Total Reward: 16.103847766274995, Score: 0.010631627952863603, Total Score: 0.09859277876658075
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.79it/s] 20%|██ | 4/20 [00:00<00:01, 15.72it/s] 30%|███ | 6/20 [00:00<00:00, 15.92it/s] 40%|████ | 8/20 [00:00<00:00, 15.27it/s] 50%|█████ | 10/20 [00:00<00:00, 15.51it/s] 60%|██████ | 12/20 [00:00<00:00, 15.35it/s] 70%|███████ | 14/20 [00:00<00:00, 15.33it/s] 80%|████████ | 16/20 [00:01<00:00, 15.35it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.29it/s] 100%|██████████| 20/20 [00:01<00:00, 15.36it/s] 13%|█▎ | 13/100 [00:19<01:59, 1.37s/it]
Step: 12, Reward: 1.818083363081429, Total Reward: 17.921931129356423, Score: 0.01117693796828244, Total Score: 0.10976971673486319
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 14.58it/s] 20%|██ | 4/20 [00:00<00:01, 15.13it/s] 30%|███ | 6/20 [00:00<00:01, 8.76it/s] 40%|████ | 8/20 [00:00<00:01, 10.59it/s] 50%|█████ | 10/20 [00:00<00:00, 11.91it/s] 60%|██████ | 12/20 [00:00<00:00, 12.94it/s] 70%|███████ | 14/20 [00:01<00:00, 13.73it/s] 80%|████████ | 16/20 [00:01<00:00, 9.57it/s] 90%|█████████ | 18/20 [00:01<00:00, 10.75it/s] 100%|██████████| 20/20 [00:01<00:00, 11.48it/s] 14%|█▍ | 14/100 [00:20<02:07, 1.49s/it]
Step: 13, Reward: 1.816563587926592, Total Reward: 19.738494717283015, Score: 0.011735562325863405, Total Score: 0.1215052790607266
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.79it/s] 20%|██ | 4/20 [00:00<00:01, 13.70it/s] 30%|███ | 6/20 [00:00<00:01, 9.58it/s] 40%|████ | 8/20 [00:00<00:01, 11.24it/s] 50%|█████ | 10/20 [00:00<00:00, 12.52it/s] 60%|██████ | 12/20 [00:00<00:00, 13.38it/s] 70%|███████ | 14/20 [00:01<00:00, 14.02it/s] 80%|████████ | 16/20 [00:01<00:00, 14.46it/s] 90%|█████████ | 18/20 [00:01<00:00, 14.58it/s] 100%|██████████| 20/20 [00:01<00:00, 13.37it/s] 15%|█▌ | 15/100 [00:22<02:07, 1.50s/it]
Step: 14, Reward: 1.8434045339664338, Total Reward: 21.58189925124945, Score: 0.012293719717277263, Total Score: 0.13379899877800386
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.44it/s] 20%|██ | 4/20 [00:00<00:01, 15.39it/s] 30%|███ | 6/20 [00:00<00:00, 15.36it/s] 40%|████ | 8/20 [00:00<00:00, 15.42it/s] 50%|█████ | 10/20 [00:00<00:00, 15.40it/s] 60%|██████ | 12/20 [00:00<00:00, 14.90it/s] 70%|███████ | 14/20 [00:00<00:00, 14.35it/s] 80%|████████ | 16/20 [00:01<00:00, 14.59it/s] 90%|█████████ | 18/20 [00:01<00:00, 14.46it/s] 100%|██████████| 20/20 [00:01<00:00, 14.72it/s] 16%|█▌ | 16/100 [00:23<02:02, 1.46s/it]
Step: 15, Reward: 1.8763610133755022, Total Reward: 23.45826026462495, Score: 0.012860124258707918, Total Score: 0.14665912303671177
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 14.40it/s] 20%|██ | 4/20 [00:00<00:01, 14.16it/s] 30%|███ | 6/20 [00:00<00:01, 13.98it/s] 40%|████ | 8/20 [00:00<00:00, 13.70it/s] 50%|█████ | 10/20 [00:00<00:00, 13.87it/s] 60%|██████ | 12/20 [00:00<00:00, 13.83it/s] 70%|███████ | 14/20 [00:01<00:00, 13.29it/s] 80%|████████ | 16/20 [00:01<00:00, 13.54it/s] 90%|█████████ | 18/20 [00:01<00:00, 13.50it/s] 100%|██████████| 20/20 [00:01<00:00, 13.47it/s] 17%|█▋ | 17/100 [00:25<02:02, 1.47s/it]
Step: 16, Reward: 1.8580889190962222, Total Reward: 25.316349183721172, Score: 0.013436655009151793, Total Score: 0.16009577804586356
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 12.85it/s] 20%|██ | 4/20 [00:00<00:01, 12.72it/s] 30%|███ | 6/20 [00:00<00:01, 12.70it/s] 40%|████ | 8/20 [00:00<00:00, 13.17it/s] 50%|█████ | 10/20 [00:00<00:00, 13.36it/s] 60%|██████ | 12/20 [00:00<00:00, 13.32it/s] 70%|███████ | 14/20 [00:01<00:00, 13.10it/s] 80%|████████ | 16/20 [00:01<00:00, 12.81it/s] 90%|█████████ | 18/20 [00:01<00:00, 12.93it/s] 100%|██████████| 20/20 [00:01<00:00, 12.89it/s] 18%|█▊ | 18/100 [00:26<02:03, 1.50s/it]
Step: 17, Reward: 1.833873406539959, Total Reward: 27.15022259026113, Score: 0.014007571475269827, Total Score: 0.17410334952113338
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 12.75it/s] 20%|██ | 4/20 [00:00<00:01, 12.71it/s] 30%|███ | 6/20 [00:00<00:01, 12.53it/s] 40%|████ | 8/20 [00:00<00:00, 12.35it/s] 50%|█████ | 10/20 [00:00<00:00, 12.43it/s] 60%|██████ | 12/20 [00:00<00:00, 12.47it/s] 70%|███████ | 14/20 [00:01<00:00, 12.67it/s] 80%|████████ | 16/20 [00:01<00:00, 12.87it/s] 90%|█████████ | 18/20 [00:01<00:00, 12.97it/s] 100%|██████████| 20/20 [00:01<00:00, 12.61it/s] 19%|█▉ | 19/100 [00:28<02:04, 1.54s/it]
Step: 18, Reward: 1.7923612227351886, Total Reward: 28.942583812996318, Score: 0.01457104748215484, Total Score: 0.18867439700328822
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 13.42it/s] 20%|██ | 4/20 [00:00<00:01, 13.16it/s] 30%|███ | 6/20 [00:00<00:01, 13.34it/s] 40%|████ | 8/20 [00:00<00:00, 13.64it/s] 50%|█████ | 10/20 [00:00<00:00, 13.32it/s] 60%|██████ | 12/20 [00:00<00:00, 13.95it/s] 70%|███████ | 14/20 [00:01<00:00, 14.17it/s] 80%|████████ | 16/20 [00:01<00:00, 14.50it/s] 90%|█████████ | 18/20 [00:01<00:00, 14.89it/s] 100%|██████████| 20/20 [00:01<00:00, 14.15it/s] 20%|██ | 20/100 [00:29<02:00, 1.51s/it]
Step: 19, Reward: 1.7772864941994806, Total Reward: 30.719870307195798, Score: 0.015121768453995469, Total Score: 0.20379616545728368
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.84it/s] 20%|██ | 4/20 [00:00<00:01, 15.14it/s] 30%|███ | 6/20 [00:00<00:00, 15.10it/s] 40%|████ | 8/20 [00:00<00:00, 15.06it/s] 50%|█████ | 10/20 [00:00<00:00, 14.75it/s] 60%|██████ | 12/20 [00:00<00:00, 14.87it/s] 70%|███████ | 14/20 [00:00<00:00, 15.11it/s] 80%|████████ | 16/20 [00:01<00:00, 15.36it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.49it/s] 100%|██████████| 20/20 [00:01<00:00, 15.08it/s] 21%|██ | 21/100 [00:31<01:55, 1.46s/it]
Step: 20, Reward: 1.7596802514374612, Total Reward: 32.47955055863326, Score: 0.01566785756422019, Total Score: 0.21946402302150386
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 16.74it/s] 20%|██ | 4/20 [00:00<00:01, 15.76it/s] 30%|███ | 6/20 [00:00<00:00, 15.25it/s] 40%|████ | 8/20 [00:00<00:00, 15.38it/s] 50%|█████ | 10/20 [00:00<00:00, 15.50it/s] 60%|██████ | 12/20 [00:00<00:00, 15.49it/s] 70%|███████ | 14/20 [00:00<00:00, 15.44it/s] 80%|████████ | 16/20 [00:01<00:00, 15.51it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.61it/s] 100%|██████████| 20/20 [00:01<00:00, 15.32it/s] 22%|██▏ | 22/100 [00:32<01:50, 1.42s/it]
Step: 21, Reward: 1.7213467511037084, Total Reward: 34.200897309736966, Score: 0.0162085369796795, Total Score: 0.23567256000118336
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 16.04it/s] 20%|██ | 4/20 [00:00<00:01, 15.48it/s] 30%|███ | 6/20 [00:00<00:00, 15.66it/s] 40%|████ | 8/20 [00:00<00:00, 15.56it/s] 50%|█████ | 10/20 [00:00<00:00, 15.75it/s] 60%|██████ | 12/20 [00:00<00:00, 15.70it/s] 70%|███████ | 14/20 [00:00<00:00, 15.73it/s] 80%|████████ | 16/20 [00:01<00:00, 15.52it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.72it/s] 100%|██████████| 20/20 [00:01<00:00, 15.56it/s] 23%|██▎ | 23/100 [00:33<01:46, 1.38s/it]
Step: 22, Reward: 1.681650865266795, Total Reward: 35.88254817500376, Score: 0.016737438042488645, Total Score: 0.25240999804367203
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.76it/s] 20%|██ | 4/20 [00:00<00:01, 15.29it/s] 30%|███ | 6/20 [00:00<00:00, 15.15it/s] 40%|████ | 8/20 [00:00<00:00, 15.25it/s] 50%|█████ | 10/20 [00:00<00:00, 15.34it/s] 60%|██████ | 12/20 [00:00<00:00, 15.01it/s] 70%|███████ | 14/20 [00:00<00:00, 14.90it/s] 80%|████████ | 16/20 [00:01<00:00, 14.85it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.04it/s] 100%|██████████| 20/20 [00:01<00:00, 14.78it/s] 24%|██▍ | 24/100 [00:35<01:44, 1.38s/it]
Step: 23, Reward: 1.649656828943054, Total Reward: 37.532205003946814, Score: 0.017254142146030386, Total Score: 0.2696641401897024
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.40it/s] 20%|██ | 4/20 [00:00<00:01, 15.69it/s] 30%|███ | 6/20 [00:00<00:00, 15.45it/s] 40%|████ | 8/20 [00:00<00:00, 15.56it/s] 50%|█████ | 10/20 [00:00<00:00, 15.69it/s] 60%|██████ | 12/20 [00:00<00:00, 15.53it/s] 70%|███████ | 14/20 [00:00<00:00, 15.66it/s] 80%|████████ | 16/20 [00:01<00:00, 15.72it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.65it/s] 100%|██████████| 20/20 [00:01<00:00, 15.52it/s] 25%|██▌ | 25/100 [00:36<01:41, 1.36s/it]
Step: 24, Reward: 1.6520971180163586, Total Reward: 39.18430212196317, Score: 0.017761015760854884, Total Score: 0.2874251559505573
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.05it/s] 20%|██ | 4/20 [00:00<00:01, 15.17it/s] 30%|███ | 6/20 [00:00<00:00, 15.45it/s] 40%|████ | 8/20 [00:00<00:00, 15.68it/s] 50%|█████ | 10/20 [00:00<00:00, 15.54it/s] 60%|██████ | 12/20 [00:00<00:00, 15.60it/s] 70%|███████ | 14/20 [00:00<00:00, 15.61it/s] 80%|████████ | 16/20 [00:01<00:00, 15.39it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.20it/s] 100%|██████████| 20/20 [00:01<00:00, 15.26it/s] 26%|██▌ | 26/100 [00:37<01:39, 1.35s/it]
Step: 25, Reward: 1.6532160502693138, Total Reward: 40.837518172232485, Score: 0.0182686391789852, Total Score: 0.3056937951295425
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.48it/s] 20%|██ | 4/20 [00:00<00:01, 15.31it/s] 30%|███ | 6/20 [00:00<00:00, 15.43it/s] 40%|████ | 8/20 [00:00<00:00, 15.55it/s] 50%|█████ | 10/20 [00:00<00:00, 15.42it/s] 60%|██████ | 12/20 [00:00<00:00, 14.96it/s] 70%|███████ | 14/20 [00:00<00:00, 14.67it/s] 80%|████████ | 16/20 [00:01<00:00, 15.02it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.02it/s] 100%|██████████| 20/20 [00:01<00:00, 15.05it/s] 27%|██▋ | 27/100 [00:39<01:38, 1.35s/it]
Step: 26, Reward: 1.6534424303321889, Total Reward: 42.49096060256468, Score: 0.0187766064002786, Total Score: 0.3244704015298211
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 16.23it/s] 20%|██ | 4/20 [00:00<00:01, 15.38it/s] 30%|███ | 6/20 [00:00<00:00, 15.55it/s] 40%|████ | 8/20 [00:00<00:00, 15.19it/s] 50%|█████ | 10/20 [00:00<00:00, 14.98it/s] 60%|██████ | 12/20 [00:00<00:00, 15.14it/s] 70%|███████ | 14/20 [00:00<00:00, 15.17it/s] 80%|████████ | 16/20 [00:01<00:00, 15.15it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.35it/s] 100%|██████████| 20/20 [00:01<00:00, 15.25it/s] 28%|██▊ | 28/100 [00:40<01:36, 1.34s/it]
Step: 27, Reward: 1.6543163640247096, Total Reward: 44.145276966589385, Score: 0.019284643179118023, Total Score: 0.34375504470893914
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.79it/s] 20%|██ | 4/20 [00:00<00:01, 15.28it/s] 30%|███ | 6/20 [00:00<00:00, 15.38it/s] 40%|████ | 8/20 [00:00<00:00, 14.96it/s] 50%|█████ | 10/20 [00:00<00:00, 14.82it/s] 60%|██████ | 12/20 [00:00<00:00, 15.07it/s] 70%|███████ | 14/20 [00:00<00:00, 15.27it/s] 80%|████████ | 16/20 [00:01<00:00, 14.97it/s] 90%|█████████ | 18/20 [00:01<00:00, 14.74it/s] 100%|██████████| 20/20 [00:01<00:00, 14.84it/s] 29%|██▉ | 29/100 [00:41<01:35, 1.35s/it]
Step: 28, Reward: 1.6274647523947772, Total Reward: 45.772741718984165, Score: 0.019792948482854303, Total Score: 0.36354799319179343
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 13.81it/s] 20%|██ | 4/20 [00:00<00:01, 14.21it/s] 30%|███ | 6/20 [00:00<00:00, 14.17it/s] 40%|████ | 8/20 [00:00<00:00, 14.18it/s] 50%|█████ | 10/20 [00:00<00:00, 14.16it/s] 60%|██████ | 12/20 [00:00<00:00, 13.63it/s] 70%|███████ | 14/20 [00:01<00:00, 13.73it/s] 80%|████████ | 16/20 [00:01<00:00, 13.80it/s] 90%|█████████ | 18/20 [00:01<00:00, 13.76it/s] 100%|██████████| 20/20 [00:01<00:00, 13.75it/s] 30%|███ | 30/100 [00:43<01:37, 1.39s/it]
Step: 29, Reward: 1.6125653440731562, Total Reward: 47.38530706305732, Score: 0.020293003359464205, Total Score: 0.38384099655125764
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 12.64it/s] 20%|██ | 4/20 [00:00<00:01, 12.85it/s] 30%|███ | 6/20 [00:00<00:01, 12.67it/s] 40%|████ | 8/20 [00:00<00:00, 13.10it/s] 50%|█████ | 10/20 [00:00<00:00, 13.16it/s] 60%|██████ | 12/20 [00:00<00:00, 13.18it/s] 70%|███████ | 14/20 [00:01<00:00, 13.14it/s] 80%|████████ | 16/20 [00:01<00:00, 12.58it/s] 90%|█████████ | 18/20 [00:01<00:00, 12.56it/s] 100%|██████████| 20/20 [00:01<00:00, 12.73it/s] 31%|███ | 31/100 [00:44<01:39, 1.45s/it]
Step: 30, Reward: 1.6173703384364473, Total Reward: 49.00267740149376, Score: 0.0207884802433533, Total Score: 0.4046294767946109
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 13.95it/s] 20%|██ | 4/20 [00:00<00:01, 13.68it/s] 30%|███ | 6/20 [00:00<00:01, 13.79it/s] 40%|████ | 8/20 [00:00<00:00, 13.58it/s] 50%|█████ | 10/20 [00:00<00:00, 12.85it/s] 60%|██████ | 12/20 [00:00<00:00, 12.85it/s] 70%|███████ | 14/20 [00:01<00:00, 13.08it/s] 80%|████████ | 16/20 [00:01<00:00, 13.18it/s] 90%|█████████ | 18/20 [00:01<00:00, 13.08it/s] 100%|██████████| 20/20 [00:01<00:00, 13.01it/s] 32%|███▏ | 32/100 [00:46<01:40, 1.48s/it]
Step: 31, Reward: 1.5497623762580708, Total Reward: 50.552439777751836, Score: 0.02128543350997813, Total Score: 0.42591491030458906
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 12.94it/s] 20%|██ | 4/20 [00:00<00:01, 13.84it/s] 30%|███ | 6/20 [00:00<00:01, 13.93it/s] 40%|████ | 8/20 [00:00<00:00, 14.62it/s] 50%|█████ | 10/20 [00:00<00:00, 14.69it/s] 60%|██████ | 12/20 [00:00<00:00, 15.09it/s] 70%|███████ | 14/20 [00:00<00:00, 14.55it/s] 80%|████████ | 16/20 [00:01<00:00, 15.02it/s] 90%|█████████ | 18/20 [00:01<00:00, 14.92it/s] 100%|██████████| 20/20 [00:01<00:00, 14.64it/s] 33%|███▎ | 33/100 [00:47<01:37, 1.45s/it]
Step: 32, Reward: 1.490298587276498, Total Reward: 52.042738365028335, Score: 0.0217616135517849, Total Score: 0.44767652385637396
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 14.55it/s] 20%|██ | 4/20 [00:00<00:01, 15.41it/s] 30%|███ | 6/20 [00:00<00:00, 15.63it/s] 40%|████ | 8/20 [00:00<00:00, 15.59it/s] 50%|█████ | 10/20 [00:00<00:00, 15.69it/s] 60%|██████ | 12/20 [00:00<00:00, 15.78it/s] 70%|███████ | 14/20 [00:00<00:00, 15.61it/s] 80%|████████ | 16/20 [00:01<00:00, 14.95it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.19it/s] 100%|██████████| 20/20 [00:01<00:00, 15.29it/s] 34%|███▍ | 34/100 [00:49<01:33, 1.41s/it]
Step: 33, Reward: 1.4584480178869372, Total Reward: 53.50118638291527, Score: 0.022219522747714257, Total Score: 0.46989604660408824
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.54it/s] 20%|██ | 4/20 [00:00<00:01, 15.41it/s] 30%|███ | 6/20 [00:00<00:00, 15.67it/s] 40%|████ | 8/20 [00:00<00:00, 15.91it/s] 50%|█████ | 10/20 [00:00<00:00, 15.91it/s] 60%|██████ | 12/20 [00:00<00:00, 15.50it/s] 70%|███████ | 14/20 [00:00<00:00, 15.60it/s] 80%|████████ | 16/20 [00:01<00:00, 15.53it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.50it/s] 100%|██████████| 20/20 [00:01<00:00, 15.27it/s] 35%|███▌ | 35/100 [00:50<01:30, 1.39s/it]
Step: 34, Reward: 1.4048398211769302, Total Reward: 54.9060262040922, Score: 0.022667645536581578, Total Score: 0.4925636921406698
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 14.93it/s] 20%|██ | 4/20 [00:00<00:01, 14.99it/s] 30%|███ | 6/20 [00:00<00:00, 14.45it/s] 40%|████ | 8/20 [00:00<00:00, 14.46it/s] 50%|█████ | 10/20 [00:00<00:00, 14.86it/s] 60%|██████ | 12/20 [00:00<00:00, 15.17it/s] 70%|███████ | 14/20 [00:00<00:00, 15.28it/s] 80%|████████ | 16/20 [00:01<00:00, 15.10it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.28it/s] 100%|██████████| 20/20 [00:01<00:00, 15.02it/s] 36%|███▌ | 36/100 [00:51<01:28, 1.38s/it]
Step: 35, Reward: 1.378891084714629, Total Reward: 56.28491728880683, Score: 0.023099296669057166, Total Score: 0.5156629888097269
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.73it/s] 20%|██ | 4/20 [00:00<00:01, 15.60it/s] 30%|███ | 6/20 [00:00<00:00, 15.58it/s] 40%|████ | 8/20 [00:00<00:00, 15.70it/s] 50%|█████ | 10/20 [00:00<00:00, 15.57it/s] 60%|██████ | 12/20 [00:00<00:00, 15.43it/s] 70%|███████ | 14/20 [00:00<00:00, 15.24it/s] 80%|████████ | 16/20 [00:01<00:00, 15.09it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.32it/s] 100%|██████████| 20/20 [00:01<00:00, 15.21it/s] 37%|███▋ | 37/100 [00:53<01:26, 1.37s/it]
Step: 36, Reward: 1.3393234239492198, Total Reward: 57.62424071275605, Score: 0.023522974791861884, Total Score: 0.5391859636015888
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.93it/s] 20%|██ | 4/20 [00:00<00:01, 15.57it/s] 30%|███ | 6/20 [00:00<00:00, 15.41it/s] 40%|████ | 8/20 [00:00<00:00, 15.43it/s] 50%|█████ | 10/20 [00:00<00:00, 15.58it/s] 60%|██████ | 12/20 [00:00<00:00, 15.46it/s] 70%|███████ | 14/20 [00:00<00:00, 15.47it/s] 80%|████████ | 16/20 [00:01<00:00, 15.27it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.45it/s] 100%|██████████| 20/20 [00:01<00:00, 15.34it/s] 38%|███▊ | 38/100 [00:54<01:23, 1.35s/it]
Step: 37, Reward: 1.2729857307511654, Total Reward: 58.897226443507215, Score: 0.023934495353839142, Total Score: 0.563120458955428
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.87it/s] 20%|██ | 4/20 [00:00<00:01, 15.80it/s] 30%|███ | 6/20 [00:00<00:00, 15.95it/s] 40%|████ | 8/20 [00:00<00:00, 15.39it/s] 50%|█████ | 10/20 [00:00<00:00, 15.62it/s] 60%|██████ | 12/20 [00:00<00:00, 15.55it/s] 70%|███████ | 14/20 [00:00<00:00, 15.33it/s] 80%|████████ | 16/20 [00:01<00:00, 15.40it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.39it/s] 100%|██████████| 20/20 [00:01<00:00, 15.41it/s] 39%|███▉ | 39/100 [00:55<01:21, 1.34s/it]
Step: 38, Reward: 1.2637156051988185, Total Reward: 60.16094204870603, Score: 0.024325632993889564, Total Score: 0.5874460919493175
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.67it/s] 20%|██ | 4/20 [00:00<00:01, 14.66it/s] 30%|███ | 6/20 [00:00<00:00, 14.98it/s] 40%|████ | 8/20 [00:00<00:00, 15.33it/s] 50%|█████ | 10/20 [00:00<00:00, 15.26it/s] 60%|██████ | 12/20 [00:00<00:00, 15.12it/s] 70%|███████ | 14/20 [00:00<00:00, 15.36it/s] 80%|████████ | 16/20 [00:01<00:00, 15.46it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.40it/s] 100%|██████████| 20/20 [00:01<00:00, 15.10it/s] 40%|████ | 40/100 [00:57<01:20, 1.34s/it]
Step: 39, Reward: 1.2776175812728203, Total Reward: 61.438559629978855, Score: 0.0247139222948393, Total Score: 0.6121600142441568
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 13.34it/s] 20%|██ | 4/20 [00:00<00:01, 13.82it/s] 30%|███ | 6/20 [00:00<00:00, 14.29it/s] 40%|████ | 8/20 [00:00<00:00, 14.64it/s] 50%|█████ | 10/20 [00:00<00:00, 14.84it/s] 60%|██████ | 12/20 [00:00<00:00, 14.60it/s] 70%|███████ | 14/20 [00:00<00:00, 15.09it/s] 80%|████████ | 16/20 [00:01<00:00, 15.32it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.39it/s] 100%|██████████| 20/20 [00:01<00:00, 14.90it/s] 41%|████ | 41/100 [00:58<01:19, 1.35s/it]
Step: 40, Reward: 1.203964270030611, Total Reward: 62.642523900009465, Score: 0.02510648311744263, Total Score: 0.6372664973615995
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.63it/s] 20%|██ | 4/20 [00:00<00:01, 15.76it/s] 30%|███ | 6/20 [00:00<00:00, 15.88it/s] 40%|████ | 8/20 [00:00<00:00, 15.61it/s] 50%|█████ | 10/20 [00:00<00:00, 15.66it/s] 60%|██████ | 12/20 [00:00<00:00, 15.70it/s] 70%|███████ | 14/20 [00:00<00:00, 15.11it/s] 80%|████████ | 16/20 [00:01<00:00, 15.12it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.11it/s] 100%|██████████| 20/20 [00:01<00:00, 15.19it/s] 42%|████▏ | 42/100 [00:59<01:17, 1.34s/it]
Step: 41, Reward: 1.092016290948236, Total Reward: 63.7345401909577, Score: 0.025476413221063608, Total Score: 0.6627429105826631
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 14.69it/s] 20%|██ | 4/20 [00:00<00:01, 13.65it/s] 30%|███ | 6/20 [00:00<00:01, 13.64it/s] 40%|████ | 8/20 [00:00<00:00, 13.78it/s] 50%|█████ | 10/20 [00:00<00:00, 13.89it/s] 60%|██████ | 12/20 [00:00<00:00, 13.75it/s] 70%|███████ | 14/20 [00:01<00:00, 13.97it/s] 80%|████████ | 16/20 [00:01<00:00, 14.08it/s] 90%|█████████ | 18/20 [00:01<00:00, 13.81it/s] 100%|██████████| 20/20 [00:01<00:00, 13.69it/s] 43%|████▎ | 43/100 [01:01<01:18, 1.38s/it]
Step: 42, Reward: 1.1296472681807004, Total Reward: 64.8641874591384, Score: 0.0258119461847254, Total Score: 0.6885548567673885
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 13.23it/s] 20%|██ | 4/20 [00:00<00:01, 13.12it/s] 30%|███ | 6/20 [00:00<00:01, 13.14it/s] 40%|████ | 8/20 [00:00<00:00, 12.96it/s] 50%|█████ | 10/20 [00:00<00:00, 12.94it/s] 60%|██████ | 12/20 [00:00<00:00, 13.03it/s] 70%|███████ | 14/20 [00:01<00:00, 12.87it/s] 80%|████████ | 16/20 [00:01<00:00, 12.98it/s] 90%|█████████ | 18/20 [00:01<00:00, 13.02it/s] 100%|██████████| 20/20 [00:01<00:00, 12.95it/s] 44%|████▍ | 44/100 [01:02<01:20, 1.44s/it]
Step: 43, Reward: 1.1803122177054457, Total Reward: 66.04449967684386, Score: 0.026159041643764744, Total Score: 0.7147138984111532
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 12.98it/s] 20%|██ | 4/20 [00:00<00:01, 12.58it/s] 30%|███ | 6/20 [00:00<00:01, 12.60it/s] 40%|████ | 8/20 [00:00<00:00, 12.52it/s] 50%|█████ | 10/20 [00:00<00:00, 12.71it/s] 60%|██████ | 12/20 [00:00<00:00, 12.92it/s] 70%|███████ | 14/20 [00:01<00:00, 12.92it/s] 80%|████████ | 16/20 [00:01<00:00, 12.95it/s] 90%|█████████ | 18/20 [00:01<00:00, 13.02it/s] 100%|██████████| 20/20 [00:01<00:00, 12.80it/s] 45%|████▌ | 45/100 [01:04<01:21, 1.48s/it]
Step: 44, Reward: 1.200053185050725, Total Reward: 67.24455286189458, Score: 0.02652170441696297, Total Score: 0.7412356028281162
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 13.28it/s] 20%|██ | 4/20 [00:00<00:01, 13.24it/s] 30%|███ | 6/20 [00:00<00:01, 13.22it/s] 40%|████ | 8/20 [00:00<00:00, 13.41it/s] 50%|█████ | 10/20 [00:00<00:00, 13.22it/s] 60%|██████ | 12/20 [00:00<00:00, 13.55it/s] 70%|███████ | 14/20 [00:01<00:00, 13.86it/s] 80%|████████ | 16/20 [00:01<00:00, 14.10it/s] 90%|█████████ | 18/20 [00:01<00:00, 14.54it/s] 100%|██████████| 20/20 [00:01<00:00, 13.96it/s] 46%|████▌ | 46/100 [01:05<01:19, 1.47s/it]
Step: 45, Reward: 1.196837866003687, Total Reward: 68.44139072789827, Score: 0.026890432800476552, Total Score: 0.7681260356285927
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 16.29it/s] 20%|██ | 4/20 [00:00<00:01, 15.50it/s] 30%|███ | 6/20 [00:00<00:00, 15.73it/s] 40%|████ | 8/20 [00:00<00:00, 15.55it/s] 50%|█████ | 10/20 [00:00<00:00, 15.10it/s] 60%|██████ | 12/20 [00:00<00:00, 14.50it/s] 70%|███████ | 14/20 [00:00<00:00, 14.78it/s] 80%|████████ | 16/20 [00:01<00:00, 14.89it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.29it/s] 100%|██████████| 20/20 [00:01<00:00, 15.01it/s] 47%|████▋ | 47/100 [01:07<01:16, 1.44s/it]
Step: 46, Reward: 1.122069119979826, Total Reward: 69.5634598478781, Score: 0.027258173244947545, Total Score: 0.7953842088735402
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 16.50it/s] 20%|██ | 4/20 [00:00<00:01, 15.85it/s] 30%|███ | 6/20 [00:00<00:00, 15.98it/s] 40%|████ | 8/20 [00:00<00:00, 15.74it/s] 50%|█████ | 10/20 [00:00<00:00, 15.68it/s] 60%|██████ | 12/20 [00:00<00:00, 15.43it/s] 70%|███████ | 14/20 [00:00<00:00, 15.08it/s] 80%|████████ | 16/20 [00:01<00:00, 15.22it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.16it/s] 100%|██████████| 20/20 [00:01<00:00, 15.26it/s] 48%|████▊ | 48/100 [01:08<01:13, 1.41s/it]
Step: 47, Reward: 1.0683895229010438, Total Reward: 70.63184937077914, Score: 0.027602940241906255, Total Score: 0.8229871491154465
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 16.20it/s] 20%|██ | 4/20 [00:00<00:01, 15.58it/s] 30%|███ | 6/20 [00:00<00:00, 15.75it/s] 40%|████ | 8/20 [00:00<00:00, 15.51it/s] 50%|█████ | 10/20 [00:00<00:00, 15.43it/s] 60%|██████ | 12/20 [00:00<00:00, 15.59it/s] 70%|███████ | 14/20 [00:00<00:00, 15.47it/s] 80%|████████ | 16/20 [00:01<00:00, 15.54it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.75it/s] 100%|██████████| 20/20 [00:01<00:00, 15.59it/s] 49%|████▉ | 49/100 [01:09<01:10, 1.37s/it]
Step: 48, Reward: 1.0614508004688126, Total Reward: 71.69330017124796, Score: 0.027931213643993428, Total Score: 0.8509183627594399
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.03it/s] 20%|██ | 4/20 [00:00<00:01, 15.53it/s] 30%|███ | 6/20 [00:00<00:00, 15.15it/s] 40%|████ | 8/20 [00:00<00:00, 15.38it/s] 50%|█████ | 10/20 [00:00<00:00, 15.55it/s] 60%|██████ | 12/20 [00:00<00:00, 15.69it/s] 70%|███████ | 14/20 [00:00<00:00, 15.70it/s] 80%|████████ | 16/20 [00:01<00:00, 15.85it/s] 90%|█████████ | 18/20 [00:01<00:00, 16.01it/s] 100%|██████████| 20/20 [00:01<00:00, 15.56it/s] 50%|█████ | 50/100 [01:11<01:07, 1.35s/it]
Step: 49, Reward: 0.9609488901545228, Total Reward: 72.65424906140248, Score: 0.028257355053983954, Total Score: 0.8791757178134239
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 14.94it/s] 20%|██ | 4/20 [00:00<00:01, 15.13it/s] 30%|███ | 6/20 [00:00<00:00, 15.44it/s] 40%|████ | 8/20 [00:00<00:00, 15.64it/s] 50%|█████ | 10/20 [00:00<00:00, 15.68it/s] 60%|██████ | 12/20 [00:00<00:00, 15.83it/s] 70%|███████ | 14/20 [00:00<00:00, 15.85it/s] 80%|████████ | 16/20 [00:01<00:00, 15.90it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.34it/s] 100%|██████████| 20/20 [00:01<00:00, 15.39it/s] 51%|█████ | 51/100 [01:12<01:05, 1.34s/it]
Step: 50, Reward: 0.9235699583514453, Total Reward: 73.57781901975393, Score: 0.028552616243504376, Total Score: 0.9077283340569282
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 16.89it/s] 20%|██ | 4/20 [00:00<00:01, 15.69it/s] 30%|███ | 6/20 [00:00<00:00, 16.04it/s] 40%|████ | 8/20 [00:00<00:00, 15.70it/s] 50%|█████ | 10/20 [00:00<00:00, 15.99it/s] 60%|██████ | 12/20 [00:00<00:00, 15.73it/s] 70%|███████ | 14/20 [00:00<00:00, 15.72it/s] 80%|████████ | 16/20 [00:01<00:00, 15.58it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.62it/s] 100%|██████████| 20/20 [00:01<00:00, 15.71it/s] 52%|█████▏ | 52/100 [01:13<01:03, 1.33s/it]
Step: 51, Reward: 0.9895374500855947, Total Reward: 74.56735646983952, Score: 0.028836392381134678, Total Score: 0.9365647264380629
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.94it/s] 20%|██ | 4/20 [00:00<00:01, 15.87it/s] 30%|███ | 6/20 [00:00<00:00, 15.93it/s] 40%|████ | 8/20 [00:00<00:00, 15.59it/s] 50%|█████ | 10/20 [00:00<00:00, 15.67it/s] 60%|██████ | 12/20 [00:00<00:00, 15.54it/s] 70%|███████ | 14/20 [00:00<00:00, 15.71it/s] 80%|████████ | 16/20 [00:01<00:00, 15.75it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.64it/s] 100%|██████████| 20/20 [00:01<00:00, 15.42it/s] 53%|█████▎ | 53/100 [01:15<01:02, 1.33s/it]
Step: 52, Reward: 0.960900590552957, Total Reward: 75.52825706039248, Score: 0.029140437692577098, Total Score: 0.96570516413064
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 16.72it/s] 20%|██ | 4/20 [00:00<00:01, 15.57it/s] 30%|███ | 6/20 [00:00<00:00, 15.54it/s] 40%|████ | 8/20 [00:00<00:00, 15.87it/s] 50%|█████ | 10/20 [00:00<00:00, 16.10it/s] 60%|██████ | 12/20 [00:00<00:00, 16.17it/s] 70%|███████ | 14/20 [00:00<00:00, 16.06it/s] 80%|████████ | 16/20 [00:00<00:00, 16.24it/s] 90%|█████████ | 18/20 [00:01<00:00, 16.37it/s] 100%|██████████| 20/20 [00:01<00:00, 15.96it/s] 54%|█████▍ | 54/100 [01:16<01:00, 1.31s/it]
Step: 53, Reward: 0.934898411966141, Total Reward: 76.46315547235862, Score: 0.029435684041560255, Total Score: 0.9951408481722003
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.61it/s] 20%|██ | 4/20 [00:00<00:00, 16.13it/s] 30%|███ | 6/20 [00:00<00:00, 15.65it/s] 40%|████ | 8/20 [00:00<00:00, 15.59it/s] 50%|█████ | 10/20 [00:00<00:00, 15.73it/s] 60%|██████ | 12/20 [00:00<00:00, 15.48it/s] 70%|███████ | 14/20 [00:00<00:00, 15.69it/s] 80%|████████ | 16/20 [00:01<00:00, 15.18it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.15it/s] 100%|██████████| 20/20 [00:01<00:00, 15.13it/s] 55%|█████▌ | 55/100 [01:17<00:59, 1.32s/it]
Step: 54, Reward: 0.9399328645284916, Total Reward: 77.40308833688711, Score: 0.029722940960243506, Total Score: 1.0248637891324437
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.93it/s] 20%|██ | 4/20 [00:00<00:01, 15.19it/s] 30%|███ | 6/20 [00:00<00:00, 14.97it/s] 40%|████ | 8/20 [00:00<00:00, 14.93it/s] 50%|█████ | 10/20 [00:00<00:00, 14.65it/s] 60%|██████ | 12/20 [00:00<00:00, 14.45it/s] 70%|███████ | 14/20 [00:00<00:00, 14.44it/s] 80%|████████ | 16/20 [00:01<00:00, 14.29it/s] 90%|█████████ | 18/20 [00:01<00:00, 14.32it/s] 100%|██████████| 20/20 [00:01<00:00, 14.32it/s] 56%|█████▌ | 56/100 [01:19<00:59, 1.35s/it]
Step: 55, Reward: 0.9360239412600334, Total Reward: 78.33911227814714, Score: 0.030011744764996736, Total Score: 1.0548755338974405
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 14.14it/s] 20%|██ | 4/20 [00:00<00:01, 13.51it/s] 30%|███ | 6/20 [00:00<00:01, 13.67it/s] 40%|████ | 8/20 [00:00<00:00, 13.47it/s] 50%|█████ | 10/20 [00:00<00:00, 13.67it/s] 60%|██████ | 12/20 [00:00<00:00, 13.57it/s] 70%|███████ | 14/20 [00:01<00:00, 13.52it/s] 80%|████████ | 16/20 [00:01<00:00, 13.44it/s] 90%|█████████ | 18/20 [00:01<00:00, 13.18it/s] 100%|██████████| 20/20 [00:01<00:00, 13.38it/s] 57%|█████▋ | 57/100 [01:20<00:59, 1.39s/it]
Step: 56, Reward: 0.965454454056784, Total Reward: 79.30456673220392, Score: 0.0302993475138501, Total Score: 1.0851748814112905
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 13.50it/s] 20%|██ | 4/20 [00:00<00:01, 13.07it/s] 30%|███ | 6/20 [00:00<00:01, 13.20it/s] 40%|████ | 8/20 [00:00<00:00, 13.10it/s] 50%|█████ | 10/20 [00:00<00:00, 12.71it/s] 60%|██████ | 12/20 [00:00<00:00, 12.77it/s] 70%|███████ | 14/20 [00:01<00:00, 12.96it/s] 80%|████████ | 16/20 [00:01<00:00, 13.13it/s] 90%|█████████ | 18/20 [00:01<00:00, 13.12it/s] 100%|██████████| 20/20 [00:01<00:00, 12.96it/s] 58%|█████▊ | 58/100 [01:22<01:00, 1.45s/it]
Step: 57, Reward: 0.9718332611847573, Total Reward: 80.27639999338868, Score: 0.030595993083092347, Total Score: 1.1157708744943828
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 12.36it/s] 20%|██ | 4/20 [00:00<00:01, 12.42it/s] 30%|███ | 6/20 [00:00<00:01, 12.57it/s] 40%|████ | 8/20 [00:00<00:00, 12.90it/s] 50%|█████ | 10/20 [00:00<00:00, 12.90it/s] 60%|██████ | 12/20 [00:00<00:00, 13.14it/s] 70%|███████ | 14/20 [00:01<00:00, 13.30it/s] 80%|████████ | 16/20 [00:01<00:00, 13.83it/s] 90%|█████████ | 18/20 [00:01<00:00, 14.01it/s] 100%|██████████| 20/20 [00:01<00:00, 13.56it/s] 59%|█████▉ | 59/100 [01:23<00:59, 1.46s/it]
Step: 58, Reward: 0.9845372594852125, Total Reward: 81.26093725287389, Score: 0.030894598604835323, Total Score: 1.146665473099218
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.42it/s] 20%|██ | 4/20 [00:00<00:01, 15.82it/s] 30%|███ | 6/20 [00:00<00:00, 16.02it/s] 40%|████ | 8/20 [00:00<00:00, 16.01it/s] 50%|█████ | 10/20 [00:00<00:00, 16.01it/s] 60%|██████ | 12/20 [00:00<00:00, 15.92it/s] 70%|███████ | 14/20 [00:00<00:00, 15.55it/s] 80%|████████ | 16/20 [00:01<00:00, 15.69it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.72it/s] 100%|██████████| 20/20 [00:01<00:00, 15.61it/s] 60%|██████ | 60/100 [01:25<00:56, 1.41s/it]
Step: 59, Reward: 0.9294392657576154, Total Reward: 82.1903765186315, Score: 0.031197107557539388, Total Score: 1.1778625806567575
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.95it/s] 20%|██ | 4/20 [00:00<00:00, 16.27it/s] 30%|███ | 6/20 [00:00<00:00, 15.98it/s] 40%|████ | 8/20 [00:00<00:00, 16.20it/s] 50%|█████ | 10/20 [00:00<00:00, 15.79it/s] 60%|██████ | 12/20 [00:00<00:00, 15.70it/s] 70%|███████ | 14/20 [00:00<00:00, 15.57it/s] 80%|████████ | 16/20 [00:01<00:00, 15.57it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.68it/s] 100%|██████████| 20/20 [00:01<00:00, 15.73it/s] 61%|██████ | 61/100 [01:26<00:53, 1.37s/it]
Step: 60, Reward: 0.8527246579784103, Total Reward: 83.04310117660991, Score: 0.031482687098768114, Total Score: 1.2093452677555256
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.55it/s] 20%|██ | 4/20 [00:00<00:01, 14.72it/s] 30%|███ | 6/20 [00:00<00:00, 14.87it/s] 40%|████ | 8/20 [00:00<00:00, 15.04it/s] 50%|█████ | 10/20 [00:00<00:00, 15.22it/s] 60%|██████ | 12/20 [00:00<00:00, 15.57it/s] 70%|███████ | 14/20 [00:00<00:00, 15.55it/s] 80%|████████ | 16/20 [00:01<00:00, 15.75it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.38it/s] 100%|██████████| 20/20 [00:01<00:00, 15.21it/s] 62%|██████▏ | 62/100 [01:27<00:51, 1.36s/it]
Step: 61, Reward: 0.8159099155858793, Total Reward: 83.85901109219579, Score: 0.031744695306933704, Total Score: 1.2410899630624594
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.39it/s] 20%|██ | 4/20 [00:00<00:01, 15.29it/s] 30%|███ | 6/20 [00:00<00:00, 14.79it/s] 40%|████ | 8/20 [00:00<00:00, 14.64it/s] 50%|█████ | 10/20 [00:00<00:00, 14.84it/s] 60%|██████ | 12/20 [00:00<00:00, 15.18it/s] 70%|███████ | 14/20 [00:00<00:00, 15.23it/s] 80%|████████ | 16/20 [00:01<00:00, 15.37it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.49it/s] 100%|██████████| 20/20 [00:01<00:00, 15.16it/s] 63%|██████▎ | 63/100 [01:28<00:50, 1.36s/it]
Step: 62, Reward: 0.741569097121501, Total Reward: 84.60058018931728, Score: 0.03199539181606714, Total Score: 1.2730853548785266
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 16.74it/s] 20%|██ | 4/20 [00:00<00:00, 16.05it/s] 30%|███ | 6/20 [00:00<00:00, 16.04it/s] 40%|████ | 8/20 [00:00<00:00, 16.01it/s] 50%|█████ | 10/20 [00:00<00:00, 15.55it/s] 60%|██████ | 12/20 [00:00<00:00, 15.64it/s] 70%|███████ | 14/20 [00:00<00:00, 15.79it/s] 80%|████████ | 16/20 [00:01<00:00, 15.69it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.69it/s] 100%|██████████| 20/20 [00:01<00:00, 15.69it/s] 64%|██████▍ | 64/100 [01:30<00:48, 1.34s/it]
Step: 63, Reward: 0.7086527176231232, Total Reward: 85.30923290694041, Score: 0.03222324636272516, Total Score: 1.3053086012412518
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.81it/s] 20%|██ | 4/20 [00:00<00:00, 16.15it/s] 30%|███ | 6/20 [00:00<00:00, 15.34it/s] 40%|████ | 8/20 [00:00<00:00, 15.39it/s] 50%|█████ | 10/20 [00:00<00:00, 15.54it/s] 60%|██████ | 12/20 [00:00<00:00, 15.56it/s] 70%|███████ | 14/20 [00:00<00:00, 15.57it/s] 80%|████████ | 16/20 [00:01<00:00, 15.61it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.57it/s] 100%|██████████| 20/20 [00:01<00:00, 15.50it/s] 65%|██████▌ | 65/100 [01:31<00:46, 1.33s/it]
Step: 64, Reward: 0.6771859704978528, Total Reward: 85.98641887743827, Score: 0.03244098702146991, Total Score: 1.3377495882627217
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.01it/s] 20%|██ | 4/20 [00:00<00:01, 15.33it/s] 30%|███ | 6/20 [00:00<00:00, 15.44it/s] 40%|████ | 8/20 [00:00<00:00, 15.47it/s] 50%|█████ | 10/20 [00:00<00:00, 15.38it/s] 60%|██████ | 12/20 [00:00<00:00, 15.35it/s] 70%|███████ | 14/20 [00:00<00:00, 15.34it/s] 80%|████████ | 16/20 [00:01<00:00, 15.56it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.22it/s] 100%|██████████| 20/20 [00:01<00:00, 15.28it/s] 66%|██████▌ | 66/100 [01:32<00:45, 1.33s/it]
Step: 65, Reward: 0.6582119187599296, Total Reward: 86.6446307961982, Score: 0.032649059206394944, Total Score: 1.3703986474691168
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.78it/s] 20%|██ | 4/20 [00:00<00:01, 15.71it/s] 30%|███ | 6/20 [00:00<00:00, 15.51it/s] 40%|████ | 8/20 [00:00<00:00, 15.59it/s] 50%|█████ | 10/20 [00:00<00:00, 15.68it/s] 60%|██████ | 12/20 [00:00<00:00, 15.85it/s] 70%|███████ | 14/20 [00:00<00:00, 15.66it/s] 80%|████████ | 16/20 [00:01<00:00, 15.56it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.75it/s] 100%|██████████| 20/20 [00:01<00:00, 15.52it/s] 67%|██████▋ | 67/100 [01:34<00:43, 1.32s/it]
Step: 66, Reward: 0.7254782825315979, Total Reward: 87.3701090787298, Score: 0.0328513014235209, Total Score: 1.4032499488926378
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.49it/s] 20%|██ | 4/20 [00:00<00:01, 15.18it/s] 30%|███ | 6/20 [00:00<00:00, 15.20it/s] 40%|████ | 8/20 [00:00<00:00, 15.19it/s] 50%|█████ | 10/20 [00:00<00:00, 15.28it/s] 60%|██████ | 12/20 [00:00<00:00, 14.92it/s] 70%|███████ | 14/20 [00:00<00:00, 15.05it/s] 80%|████████ | 16/20 [00:01<00:00, 15.29it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.03it/s] 100%|██████████| 20/20 [00:01<00:00, 15.03it/s] 68%|██████▊ | 68/100 [01:35<00:42, 1.33s/it]
Step: 67, Reward: 0.823284930294071, Total Reward: 88.19339400902386, Score: 0.03307421190592654, Total Score: 1.4363241607985644
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.41it/s] 20%|██ | 4/20 [00:00<00:01, 13.38it/s] 30%|███ | 6/20 [00:00<00:01, 13.72it/s] 40%|████ | 8/20 [00:00<00:00, 13.96it/s] 50%|█████ | 10/20 [00:00<00:00, 13.98it/s] 60%|██████ | 12/20 [00:00<00:00, 13.89it/s] 70%|███████ | 14/20 [00:01<00:00, 13.83it/s] 80%|████████ | 16/20 [00:01<00:00, 13.92it/s] 90%|█████████ | 18/20 [00:01<00:00, 13.65it/s] 100%|██████████| 20/20 [00:01<00:00, 13.69it/s] 69%|██████▉ | 69/100 [01:37<00:42, 1.37s/it]
Step: 68, Reward: 0.8182504990698899, Total Reward: 89.01164450809375, Score: 0.033327174462336566, Total Score: 1.4696513352609009
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 12.99it/s] 20%|██ | 4/20 [00:00<00:01, 13.12it/s] 30%|███ | 6/20 [00:00<00:01, 13.06it/s] 40%|████ | 8/20 [00:00<00:00, 13.00it/s] 50%|█████ | 10/20 [00:00<00:00, 12.75it/s] 60%|██████ | 12/20 [00:00<00:00, 12.40it/s] 70%|███████ | 14/20 [00:01<00:00, 12.54it/s] 80%|████████ | 16/20 [00:01<00:00, 12.70it/s] 90%|█████████ | 18/20 [00:01<00:00, 12.73it/s] 100%|██████████| 20/20 [00:01<00:00, 12.72it/s] 70%|███████ | 70/100 [01:38<00:43, 1.44s/it]
Step: 69, Reward: 0.8299839711613238, Total Reward: 89.84162847925508, Score: 0.03357859013923298, Total Score: 1.5032299254001338
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 11.37it/s] 20%|██ | 4/20 [00:00<00:01, 12.45it/s] 30%|███ | 6/20 [00:00<00:01, 12.70it/s] 40%|████ | 8/20 [00:00<00:00, 12.77it/s] 50%|█████ | 10/20 [00:00<00:00, 12.81it/s] 60%|██████ | 12/20 [00:00<00:00, 13.00it/s] 70%|███████ | 14/20 [00:01<00:00, 13.05it/s] 80%|████████ | 16/20 [00:01<00:00, 12.90it/s] 90%|█████████ | 18/20 [00:01<00:00, 12.96it/s] 100%|██████████| 20/20 [00:01<00:00, 12.71it/s] 71%|███████ | 71/100 [01:40<00:43, 1.48s/it]
Step: 70, Reward: 0.9397779200680799, Total Reward: 90.78140639932316, Score: 0.03383361104317364, Total Score: 1.5370635364433074
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 13.02it/s] 20%|██ | 4/20 [00:00<00:01, 13.19it/s] 30%|███ | 6/20 [00:00<00:01, 13.17it/s] 40%|████ | 8/20 [00:00<00:00, 13.26it/s] 50%|█████ | 10/20 [00:00<00:00, 13.51it/s] 60%|██████ | 12/20 [00:00<00:00, 13.98it/s] 70%|███████ | 14/20 [00:01<00:00, 14.35it/s] 80%|████████ | 16/20 [00:01<00:00, 14.60it/s] 90%|█████████ | 18/20 [00:01<00:00, 14.71it/s] 100%|██████████| 20/20 [00:01<00:00, 14.02it/s] 72%|███████▏ | 72/100 [01:41<00:41, 1.47s/it]
Step: 71, Reward: 0.9615393552198243, Total Reward: 91.74294575454299, Score: 0.034122367239686556, Total Score: 1.571185903682994
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 14.97it/s] 20%|██ | 4/20 [00:00<00:01, 14.51it/s] 30%|███ | 6/20 [00:00<00:00, 15.00it/s] 40%|████ | 8/20 [00:00<00:00, 14.94it/s] 50%|█████ | 10/20 [00:00<00:00, 14.89it/s] 60%|██████ | 12/20 [00:00<00:00, 14.95it/s] 70%|███████ | 14/20 [00:00<00:00, 14.98it/s] 80%|████████ | 16/20 [00:01<00:00, 15.28it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.40it/s] 100%|██████████| 20/20 [00:01<00:00, 14.94it/s] 73%|███████▎ | 73/100 [01:43<00:38, 1.44s/it]
Step: 72, Reward: 1.0080340018794205, Total Reward: 92.75097975642241, Score: 0.03441780985552355, Total Score: 1.6056037135385175
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 16.23it/s] 20%|██ | 4/20 [00:00<00:01, 15.53it/s] 30%|███ | 6/20 [00:00<00:00, 15.26it/s] 40%|████ | 8/20 [00:00<00:00, 15.33it/s] 50%|█████ | 10/20 [00:00<00:00, 15.48it/s] 60%|██████ | 12/20 [00:00<00:00, 15.58it/s] 70%|███████ | 14/20 [00:00<00:00, 15.22it/s] 80%|████████ | 16/20 [00:01<00:00, 15.27it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.25it/s] 100%|██████████| 20/20 [00:01<00:00, 15.18it/s] 74%|███████▍ | 74/100 [01:44<00:36, 1.41s/it]
Step: 73, Reward: 1.1409848317293718, Total Reward: 93.89196458815178, Score: 0.03472753841811556, Total Score: 1.640331251956633
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 14.55it/s] 20%|██ | 4/20 [00:00<00:01, 14.96it/s] 30%|███ | 6/20 [00:00<00:00, 15.56it/s] 40%|████ | 8/20 [00:00<00:00, 15.63it/s] 50%|█████ | 10/20 [00:00<00:00, 15.24it/s] 60%|██████ | 12/20 [00:00<00:00, 15.52it/s] 70%|███████ | 14/20 [00:00<00:00, 15.50it/s] 80%|████████ | 16/20 [00:01<00:00, 15.62it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.63it/s] 100%|██████████| 20/20 [00:01<00:00, 15.36it/s] 75%|███████▌ | 75/100 [01:45<00:34, 1.38s/it]
Step: 74, Reward: 1.2590534676832261, Total Reward: 95.15101805583501, Score: 0.03507811745732648, Total Score: 1.6754093694139596
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 16.02it/s] 20%|██ | 4/20 [00:00<00:01, 15.38it/s] 30%|███ | 6/20 [00:00<00:00, 15.54it/s] 40%|████ | 8/20 [00:00<00:00, 15.23it/s] 50%|█████ | 10/20 [00:00<00:00, 15.24it/s] 60%|██████ | 12/20 [00:00<00:00, 15.22it/s] 70%|███████ | 14/20 [00:00<00:00, 15.09it/s] 80%|████████ | 16/20 [00:01<00:00, 15.22it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.30it/s] 100%|██████████| 20/20 [00:01<00:00, 15.14it/s] 76%|███████▌ | 76/100 [01:47<00:32, 1.37s/it]
Step: 75, Reward: 1.3807002445735241, Total Reward: 96.53171830040853, Score: 0.03546497426974049, Total Score: 1.7108743436837002
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 16.32it/s] 20%|██ | 4/20 [00:00<00:00, 16.05it/s] 30%|███ | 6/20 [00:00<00:00, 14.85it/s] 40%|████ | 8/20 [00:00<00:00, 14.40it/s] 50%|█████ | 10/20 [00:00<00:00, 14.71it/s] 60%|██████ | 12/20 [00:00<00:00, 15.15it/s] 70%|███████ | 14/20 [00:00<00:00, 15.07it/s] 80%|████████ | 16/20 [00:01<00:00, 15.03it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.16it/s] 100%|██████████| 20/20 [00:01<00:00, 15.06it/s] 77%|███████▋ | 77/100 [01:48<00:31, 1.36s/it]
Step: 76, Reward: 1.5025187688076878, Total Reward: 98.03423706921622, Score: 0.035889208275066586, Total Score: 1.7467635519587668
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 13.13it/s] 20%|██ | 4/20 [00:00<00:01, 13.86it/s] 30%|███ | 6/20 [00:00<00:00, 14.70it/s] 40%|████ | 8/20 [00:00<00:00, 14.89it/s] 50%|█████ | 10/20 [00:00<00:00, 14.90it/s] 60%|██████ | 12/20 [00:00<00:00, 15.11it/s] 70%|███████ | 14/20 [00:00<00:00, 15.25it/s] 80%|████████ | 16/20 [00:01<00:00, 15.54it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.67it/s] 100%|██████████| 20/20 [00:01<00:00, 15.09it/s] 78%|███████▊ | 78/100 [01:49<00:29, 1.36s/it]
Step: 77, Reward: 1.6138815520878553, Total Reward: 99.64811862130408, Score: 0.036350872244399625, Total Score: 1.7831144242031665
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.24it/s] 20%|██ | 4/20 [00:00<00:01, 15.69it/s] 30%|███ | 6/20 [00:00<00:00, 15.14it/s] 40%|████ | 8/20 [00:00<00:00, 15.64it/s] 50%|█████ | 10/20 [00:00<00:00, 15.69it/s] 60%|██████ | 12/20 [00:00<00:00, 15.76it/s] 70%|███████ | 14/20 [00:00<00:00, 15.55it/s] 80%|████████ | 16/20 [00:01<00:00, 15.77it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.73it/s] 100%|██████████| 20/20 [00:01<00:00, 15.43it/s] 79%|███████▉ | 79/100 [01:51<00:28, 1.34s/it]
Step: 78, Reward: 1.7165485029744698, Total Reward: 101.36466712427855, Score: 0.03684675354640925, Total Score: 1.8199611777495757
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 14.23it/s] 20%|██ | 4/20 [00:00<00:01, 14.56it/s] 30%|███ | 6/20 [00:00<00:00, 15.07it/s] 40%|████ | 8/20 [00:00<00:00, 15.50it/s] 50%|█████ | 10/20 [00:00<00:00, 15.36it/s] 60%|██████ | 12/20 [00:00<00:00, 15.57it/s] 70%|███████ | 14/20 [00:00<00:00, 15.72it/s] 80%|████████ | 16/20 [00:01<00:00, 15.79it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.32it/s] 100%|██████████| 20/20 [00:01<00:00, 15.33it/s] 80%|████████ | 80/100 [01:52<00:26, 1.34s/it]
Step: 79, Reward: 1.8184694262333714, Total Reward: 103.18313655051193, Score: 0.037374180299330775, Total Score: 1.8573353580489065
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.07it/s] 20%|██ | 4/20 [00:00<00:01, 14.11it/s] 30%|███ | 6/20 [00:00<00:00, 14.84it/s] 40%|████ | 8/20 [00:00<00:00, 15.46it/s] 50%|█████ | 10/20 [00:00<00:00, 15.33it/s] 60%|██████ | 12/20 [00:00<00:00, 14.80it/s] 70%|███████ | 14/20 [00:00<00:00, 14.56it/s] 80%|████████ | 16/20 [00:01<00:00, 14.17it/s] 90%|█████████ | 18/20 [00:01<00:00, 14.18it/s] 100%|██████████| 20/20 [00:01<00:00, 14.48it/s] 81%|████████ | 81/100 [01:53<00:25, 1.35s/it]
Step: 80, Reward: 1.8574644990299636, Total Reward: 105.04060104954189, Score: 0.03793292327868928, Total Score: 1.8952682813275958
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 13.67it/s] 20%|██ | 4/20 [00:00<00:01, 13.60it/s] 30%|███ | 6/20 [00:00<00:01, 13.82it/s] 40%|████ | 8/20 [00:00<00:00, 13.76it/s] 50%|█████ | 10/20 [00:00<00:00, 13.58it/s] 60%|██████ | 12/20 [00:00<00:00, 13.50it/s] 70%|███████ | 14/20 [00:01<00:00, 13.53it/s] 80%|████████ | 16/20 [00:01<00:00, 13.53it/s] 90%|█████████ | 18/20 [00:01<00:00, 13.50it/s] 100%|██████████| 20/20 [00:01<00:00, 13.36it/s] 82%|████████▏ | 82/100 [01:55<00:25, 1.40s/it]
Step: 81, Reward: 1.8645829089491746, Total Reward: 106.90518395849107, Score: 0.038503647885475965, Total Score: 1.9337719292130717
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 12.56it/s] 20%|██ | 4/20 [00:00<00:01, 12.89it/s] 30%|███ | 6/20 [00:00<00:01, 13.02it/s] 40%|████ | 8/20 [00:00<00:00, 13.27it/s] 50%|█████ | 10/20 [00:00<00:00, 13.15it/s] 60%|██████ | 12/20 [00:00<00:00, 12.95it/s] 70%|███████ | 14/20 [00:01<00:00, 12.93it/s] 80%|████████ | 16/20 [00:01<00:00, 13.07it/s] 90%|█████████ | 18/20 [00:01<00:00, 13.14it/s] 100%|██████████| 20/20 [00:01<00:00, 13.01it/s] 83%|████████▎ | 83/100 [01:56<00:24, 1.45s/it]
Step: 82, Reward: 1.8941410550971716, Total Reward: 108.79932501358823, Score: 0.03907655969514282, Total Score: 1.9728484889082145
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 12.64it/s] 20%|██ | 4/20 [00:00<00:01, 12.52it/s] 30%|███ | 6/20 [00:00<00:01, 12.60it/s] 40%|████ | 8/20 [00:00<00:00, 12.56it/s] 50%|█████ | 10/20 [00:00<00:00, 12.65it/s] 60%|██████ | 12/20 [00:00<00:00, 13.02it/s] 70%|███████ | 14/20 [00:01<00:00, 13.00it/s] 80%|████████ | 16/20 [00:01<00:00, 13.03it/s] 90%|█████████ | 18/20 [00:01<00:00, 12.74it/s] 100%|██████████| 20/20 [00:01<00:00, 12.72it/s] 84%|████████▍ | 84/100 [01:58<00:23, 1.49s/it]
Step: 83, Reward: 1.8502530264855113, Total Reward: 110.64957804007375, Score: 0.039658553541826506, Total Score: 2.012507042450041
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 13.99it/s] 20%|██ | 4/20 [00:00<00:01, 14.40it/s] 30%|███ | 6/20 [00:00<00:00, 14.80it/s] 40%|████ | 8/20 [00:00<00:00, 14.25it/s] 50%|█████ | 10/20 [00:00<00:00, 14.42it/s] 60%|██████ | 12/20 [00:00<00:00, 14.56it/s] 70%|███████ | 14/20 [00:00<00:00, 14.90it/s] 80%|████████ | 16/20 [00:01<00:00, 15.06it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.21it/s] 100%|██████████| 20/20 [00:01<00:00, 14.74it/s] 85%|████████▌ | 85/100 [01:59<00:21, 1.46s/it]
Step: 84, Reward: 1.4546757588027448, Total Reward: 112.1042537988765, Score: 0.040227062351307546, Total Score: 2.0527341048013485
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 16.30it/s] 20%|██ | 4/20 [00:00<00:01, 15.54it/s] 30%|███ | 6/20 [00:00<00:00, 15.66it/s] 40%|████ | 8/20 [00:00<00:00, 15.51it/s] 50%|█████ | 10/20 [00:00<00:00, 15.74it/s] 60%|██████ | 12/20 [00:00<00:00, 15.74it/s] 70%|███████ | 14/20 [00:00<00:00, 15.67it/s] 80%|████████ | 16/20 [00:01<00:00, 15.54it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.70it/s] 100%|██████████| 20/20 [00:01<00:00, 15.58it/s] 86%|████████▌ | 86/100 [02:01<00:19, 1.41s/it]
Step: 85, Reward: 1.2088353186704868, Total Reward: 113.31308911754698, Score: 0.04067402607571703, Total Score: 2.093408130877066
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.21it/s] 20%|██ | 4/20 [00:00<00:01, 14.86it/s] 30%|███ | 6/20 [00:00<00:00, 15.12it/s] 40%|████ | 8/20 [00:00<00:00, 14.83it/s] 50%|█████ | 10/20 [00:00<00:00, 15.08it/s] 60%|██████ | 12/20 [00:00<00:00, 15.49it/s] 70%|███████ | 14/20 [00:00<00:00, 15.39it/s] 80%|████████ | 16/20 [00:01<00:00, 15.26it/s] 90%|█████████ | 18/20 [00:01<00:00, 14.97it/s] 100%|██████████| 20/20 [00:01<00:00, 14.98it/s] 87%|████████▋ | 87/100 [02:02<00:18, 1.39s/it]
Step: 86, Reward: 1.0966750044720495, Total Reward: 114.40976412201903, Score: 0.04104545285791306, Total Score: 2.1344535837349787
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.11it/s] 20%|██ | 4/20 [00:00<00:01, 15.04it/s] 30%|███ | 6/20 [00:00<00:00, 15.00it/s] 40%|████ | 8/20 [00:00<00:00, 15.37it/s] 50%|█████ | 10/20 [00:00<00:00, 15.17it/s] 60%|██████ | 12/20 [00:00<00:00, 15.24it/s] 70%|███████ | 14/20 [00:00<00:00, 14.94it/s] 80%|████████ | 16/20 [00:01<00:00, 15.15it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.16it/s] 100%|██████████| 20/20 [00:01<00:00, 15.03it/s] 88%|████████▊ | 88/100 [02:03<00:16, 1.38s/it]
Step: 87, Reward: 1.043542650360527, Total Reward: 115.45330677237955, Score: 0.04138241725805474, Total Score: 2.1758360009930335
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.39it/s] 20%|██ | 4/20 [00:00<00:01, 15.66it/s] 30%|███ | 6/20 [00:00<00:00, 15.47it/s] 40%|████ | 8/20 [00:00<00:00, 15.35it/s] 50%|█████ | 10/20 [00:00<00:00, 15.14it/s] 60%|██████ | 12/20 [00:00<00:00, 15.40it/s] 70%|███████ | 14/20 [00:00<00:00, 15.59it/s] 80%|████████ | 16/20 [00:01<00:00, 15.62it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.74it/s] 100%|██████████| 20/20 [00:01<00:00, 15.53it/s] 89%|████████▉ | 89/100 [02:05<00:14, 1.36s/it]
Step: 88, Reward: 1.0156134737161555, Total Reward: 116.4689202460957, Score: 0.04170305620921811, Total Score: 2.2175390572022518
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.61it/s] 20%|██ | 4/20 [00:00<00:01, 14.63it/s] 30%|███ | 6/20 [00:00<00:00, 14.95it/s] 40%|████ | 8/20 [00:00<00:00, 15.22it/s] 50%|█████ | 10/20 [00:00<00:00, 15.19it/s] 60%|██████ | 12/20 [00:00<00:00, 15.33it/s] 70%|███████ | 14/20 [00:00<00:00, 15.30it/s] 80%|████████ | 16/20 [00:01<00:00, 15.49it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.56it/s] 100%|██████████| 20/20 [00:01<00:00, 15.12it/s] 90%|█████████ | 90/100 [02:06<00:13, 1.35s/it]
Step: 89, Reward: 1.0140850969394835, Total Reward: 117.48300534303519, Score: 0.04201511364059115, Total Score: 2.259554170842843
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.45it/s] 20%|██ | 4/20 [00:00<00:01, 15.25it/s] 30%|███ | 6/20 [00:00<00:00, 15.37it/s] 40%|████ | 8/20 [00:00<00:00, 14.97it/s] 50%|█████ | 10/20 [00:00<00:00, 15.21it/s] 60%|██████ | 12/20 [00:00<00:00, 15.42it/s] 70%|███████ | 14/20 [00:00<00:00, 15.32it/s] 80%|████████ | 16/20 [00:01<00:00, 14.83it/s] 90%|█████████ | 18/20 [00:01<00:00, 14.98it/s] 100%|██████████| 20/20 [00:01<00:00, 15.03it/s] 91%|█████████ | 91/100 [02:07<00:12, 1.35s/it]
Step: 90, Reward: 1.0251360576856314, Total Reward: 118.50814140072082, Score: 0.042326701462862465, Total Score: 2.3018808723057056
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.14it/s] 20%|██ | 4/20 [00:00<00:01, 15.36it/s] 30%|███ | 6/20 [00:00<00:00, 14.96it/s] 40%|████ | 8/20 [00:00<00:00, 15.10it/s] 50%|█████ | 10/20 [00:00<00:00, 14.70it/s] 60%|██████ | 12/20 [00:00<00:00, 15.00it/s] 70%|███████ | 14/20 [00:00<00:00, 15.08it/s] 80%|████████ | 16/20 [00:01<00:00, 15.19it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.06it/s] 100%|██████████| 20/20 [00:01<00:00, 14.98it/s] 92%|█████████▏| 92/100 [02:09<00:10, 1.35s/it]
Step: 91, Reward: 1.0343617856501035, Total Reward: 119.54250318637092, Score: 0.04264168480371826, Total Score: 2.344522557109424
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 13.79it/s] 20%|██ | 4/20 [00:00<00:01, 14.53it/s] 30%|███ | 6/20 [00:00<00:00, 14.53it/s] 40%|████ | 8/20 [00:00<00:00, 14.66it/s] 50%|█████ | 10/20 [00:00<00:00, 15.11it/s] 60%|██████ | 12/20 [00:00<00:00, 15.08it/s] 70%|███████ | 14/20 [00:00<00:00, 15.26it/s] 80%|████████ | 16/20 [00:01<00:00, 15.33it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.31it/s] 100%|██████████| 20/20 [00:01<00:00, 14.74it/s] 93%|█████████▎| 93/100 [02:10<00:09, 1.36s/it]
Step: 92, Reward: 1.0457811860341049, Total Reward: 120.58828437240503, Score: 0.04295950284207034, Total Score: 2.3874820599514943
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.83it/s] 20%|██ | 4/20 [00:00<00:01, 14.78it/s] 30%|███ | 6/20 [00:00<00:00, 14.76it/s] 40%|████ | 8/20 [00:00<00:00, 14.86it/s] 50%|█████ | 10/20 [00:00<00:00, 14.98it/s] 60%|██████ | 12/20 [00:00<00:00, 14.93it/s] 70%|███████ | 14/20 [00:00<00:00, 14.63it/s] 80%|████████ | 16/20 [00:01<00:00, 14.11it/s] 90%|█████████ | 18/20 [00:01<00:00, 14.05it/s] 100%|██████████| 20/20 [00:01<00:00, 14.33it/s] 94%|█████████▍| 94/100 [02:11<00:08, 1.37s/it]
Step: 93, Reward: 1.0595894780069643, Total Reward: 121.647873850412, Score: 0.043280829605782875, Total Score: 2.4307628895572773
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 12.72it/s] 20%|██ | 4/20 [00:00<00:01, 13.70it/s] 30%|███ | 6/20 [00:00<00:01, 13.56it/s] 40%|████ | 8/20 [00:00<00:00, 12.96it/s] 50%|█████ | 10/20 [00:00<00:00, 13.09it/s] 60%|██████ | 12/20 [00:00<00:00, 13.01it/s] 70%|███████ | 14/20 [00:01<00:00, 12.00it/s] 80%|████████ | 16/20 [00:01<00:00, 11.09it/s] 90%|█████████ | 18/20 [00:01<00:00, 10.80it/s] 100%|██████████| 20/20 [00:01<00:00, 11.62it/s] 95%|█████████▌| 95/100 [02:13<00:07, 1.48s/it]
Step: 94, Reward: 1.069293613696973, Total Reward: 122.71716746410897, Score: 0.04360639910576882, Total Score: 2.474369288663046
0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:01, 9.76it/s] 10%|█ | 2/20 [00:00<00:01, 9.55it/s] 15%|█▌ | 3/20 [00:00<00:01, 9.64it/s] 25%|██▌ | 5/20 [00:00<00:01, 9.93it/s] 30%|███ | 6/20 [00:00<00:01, 9.81it/s] 35%|███▌ | 7/20 [00:00<00:01, 9.29it/s] 40%|████ | 8/20 [00:00<00:01, 9.40it/s] 45%|████▌ | 9/20 [00:00<00:01, 9.26it/s] 50%|█████ | 10/20 [00:01<00:01, 9.20it/s] 55%|█████▌ | 11/20 [00:01<00:00, 9.37it/s] 65%|██████▌ | 13/20 [00:01<00:00, 9.93it/s] 70%|███████ | 14/20 [00:01<00:00, 9.72it/s] 75%|███████▌ | 15/20 [00:01<00:00, 9.75it/s] 80%|████████ | 16/20 [00:01<00:00, 9.65it/s] 85%|████████▌ | 17/20 [00:01<00:00, 9.54it/s] 90%|█████████ | 18/20 [00:01<00:00, 9.59it/s] 95%|█████████▌| 19/20 [00:01<00:00, 9.50it/s] 100%|██████████| 20/20 [00:02<00:00, 9.50it/s] 96%|█████████▌| 96/100 [02:15<00:06, 1.68s/it]
Step: 95, Reward: 1.0759698500937362, Total Reward: 123.79313731420271, Score: 0.0439349502988255, Total Score: 2.5183042389618717
0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:02, 9.05it/s] 10%|█ | 2/20 [00:00<00:02, 8.69it/s] 15%|█▌ | 3/20 [00:00<00:01, 8.90it/s] 20%|██ | 4/20 [00:00<00:01, 9.18it/s] 25%|██▌ | 5/20 [00:00<00:01, 8.80it/s] 30%|███ | 6/20 [00:00<00:01, 9.11it/s] 35%|███▌ | 7/20 [00:00<00:01, 9.34it/s] 45%|████▌ | 9/20 [00:00<00:01, 10.04it/s] 55%|█████▌ | 11/20 [00:01<00:00, 10.33it/s] 65%|██████▌ | 13/20 [00:01<00:00, 10.58it/s] 75%|███████▌ | 15/20 [00:01<00:00, 10.54it/s] 85%|████████▌ | 17/20 [00:01<00:00, 10.08it/s] 100%|██████████| 20/20 [00:02<00:00, 9.93it/s] 97%|█████████▋| 97/100 [02:17<00:05, 1.78s/it]
Step: 96, Reward: 1.3074041389557671, Total Reward: 125.10054145315847, Score: 0.044265552832510414, Total Score: 2.562569791794382
0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:01, 9.85it/s] 10%|█ | 2/20 [00:00<00:01, 9.60it/s] 15%|█▌ | 3/20 [00:00<00:01, 9.70it/s] 25%|██▌ | 5/20 [00:00<00:01, 10.27it/s] 35%|███▌ | 7/20 [00:00<00:01, 10.26it/s] 45%|████▌ | 9/20 [00:00<00:00, 11.77it/s] 55%|█████▌ | 11/20 [00:00<00:00, 12.70it/s] 65%|██████▌ | 13/20 [00:01<00:00, 13.11it/s] 75%|███████▌ | 15/20 [00:01<00:00, 13.53it/s] 85%|████████▌ | 17/20 [00:01<00:00, 14.12it/s] 100%|██████████| 20/20 [00:01<00:00, 12.73it/s] 98%|█████████▊| 98/100 [02:19<00:03, 1.73s/it]
Step: 97, Reward: 1.6721521590810136, Total Reward: 126.77269361223948, Score: 0.04466726587386679, Total Score: 2.607237057668249
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 14.44it/s] 20%|██ | 4/20 [00:00<00:01, 14.78it/s] 30%|███ | 6/20 [00:00<00:00, 14.94it/s] 40%|████ | 8/20 [00:00<00:00, 14.87it/s] 50%|█████ | 10/20 [00:00<00:00, 14.95it/s] 60%|██████ | 12/20 [00:00<00:00, 14.97it/s] 70%|███████ | 14/20 [00:00<00:00, 15.18it/s] 80%|████████ | 16/20 [00:01<00:00, 14.82it/s] 90%|█████████ | 18/20 [00:01<00:00, 15.00it/s] 100%|██████████| 20/20 [00:01<00:00, 14.79it/s] 99%|█████████▉| 99/100 [02:20<00:01, 1.62s/it]
Step: 98, Reward: 1.75613883059031, Total Reward: 128.52883244282978, Score: 0.04518105140461443, Total Score: 2.652418109072863
0%| | 0/20 [00:00<?, ?it/s] 10%|█ | 2/20 [00:00<00:01, 15.29it/s] 20%|██ | 4/20 [00:00<00:01, 15.03it/s] 30%|███ | 6/20 [00:00<00:00, 15.02it/s] 40%|████ | 8/20 [00:00<00:00, 15.03it/s] 50%|█████ | 10/20 [00:00<00:00, 14.75it/s] 60%|██████ | 12/20 [00:00<00:00, 14.66it/s] 70%|███████ | 14/20 [00:00<00:00, 14.63it/s] 80%|████████ | 16/20 [00:01<00:00, 14.75it/s] 90%|█████████ | 18/20 [00:01<00:00, 14.54it/s] 100%|██████████| 20/20 [00:01<00:00, 14.71it/s] 100%|██████████| 100/100 [02:22<00:00, 1.42s/it]
Step: 99, Reward: 1.7563279535050194, Total Reward: 130.2851603963348, Score: 0.045720642682980664, Total Score: 2.698138751755844
show_sample(render, np.expand_dims(np.stack(rollout), axis=0))