CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
huggingface

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

GitHub Repository: huggingface/notebooks
Path: blob/main/diffusers/sd_dreambooth_training.ipynb
Views: 2535
Kernel: Python 3.7.9 64-bit ('3.7.9')

Dreambooth fine-tuning for Stable Diffusion using d🧨ffusers

This notebook shows how to "teach" Stable Diffusion a new concept via Dreambooth using 🤗 Hugging Face 🧨 Diffusers library.

Dreambooth Example By using just 3-5 images you can teach new concepts to Stable Diffusion and personalize the model on your own images

Differently from Textual Inversion, this approach trains the whole model, which can yield better results to the cost of bigger models.

For a general introduction to the Stable Diffusion model please refer to this colab.

Initial setup

#@title Install the required libs !pip install -U -qq git+https://github.com/huggingface/diffusers.git !pip install -qq accelerate tensorboard transformers ftfy gradio !pip install -qq "ipywidgets>=7,<8" !pip install -qq bitsandbytes
Installing build dependencies ... done Getting requirements to build wheel ... done Preparing wheel metadata ... done
#@title [Optional] Install xformers for faster and memory efficient training #@markdown Acknowledgement: The xformers wheel are taken from [TheLastBen/fast-stable-diffusion](https://github.com/TheLastBen/fast-stable-diffusion). Thanks a lot for building these wheels! %%time !pip install -U --pre triton from subprocess import getoutput from IPython.display import HTML from IPython.display import clear_output import time s = getoutput('nvidia-smi') if 'T4' in s: gpu = 'T4' elif 'P100' in s: gpu = 'P100' elif 'V100' in s: gpu = 'V100' elif 'A100' in s: gpu = 'A100' while True: try: gpu=='T4'or gpu=='P100'or gpu=='V100'or gpu=='A100' break except: pass print('[1;31mit seems that your GPU is not supported at the moment') time.sleep(5) if (gpu=='T4'): %pip install -q https://github.com/TheLastBen/fast-stable-diffusion/raw/main/precompiled/T4/xformers-0.0.13.dev0-py3-none-any.whl elif (gpu=='P100'): %pip install -q https://github.com/TheLastBen/fast-stable-diffusion/raw/main/precompiled/P100/xformers-0.0.13.dev0-py3-none-any.whl elif (gpu=='V100'): %pip install -q https://github.com/TheLastBen/fast-stable-diffusion/raw/main/precompiled/V100/xformers-0.0.13.dev0-py3-none-any.whl elif (gpu=='A100'): %pip install -q https://github.com/TheLastBen/fast-stable-diffusion/raw/main/precompiled/A100/xformers-0.0.13.dev0-py3-none-any.whl
#@title Import required libraries import argparse import itertools import math import os from contextlib import nullcontext import random import numpy as np import torch import torch.nn.functional as F import torch.utils.checkpoint from torch.utils.data import Dataset import PIL from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import set_seed from diffusers import AutoencoderKL, DDPMScheduler, PNDMScheduler, StableDiffusionPipeline, UNet2DConditionModel from diffusers.optimization import get_scheduler from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker from PIL import Image from torchvision import transforms from tqdm.auto import tqdm from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer import bitsandbytes as bnb def image_grid(imgs, rows, cols): assert len(imgs) == rows*cols w, h = imgs[0].size grid = Image.new('RGB', size=(cols*w, rows*h)) grid_w, grid_h = grid.size for i, img in enumerate(imgs): grid.paste(img, box=(i%cols*w, i//cols*h)) return grid

Settings for teaching your new concept

#@markdown `pretrained_model_name_or_path` which Stable Diffusion checkpoint you want to use pretrained_model_name_or_path = "stabilityai/stable-diffusion-2" #@param ["stabilityai/stable-diffusion-2", "stabilityai/stable-diffusion-2-base", "CompVis/stable-diffusion-v1-4", "runwayml/stable-diffusion-v1-5"] {allow-input: true}
#@markdown Add here the URLs to the images of the concept you are adding. 3-5 should be fine urls = [ "https://huggingface.co/datasets/valhalla/images/resolve/main/2.jpeg", "https://huggingface.co/datasets/valhalla/images/resolve/main/3.jpeg", "https://huggingface.co/datasets/valhalla/images/resolve/main/5.jpeg", "https://huggingface.co/datasets/valhalla/images/resolve/main/6.jpeg", ## You can add additional images here ]
#@title Setup and check the images you have just added import requests import glob from io import BytesIO def download_image(url): try: response = requests.get(url) except: return None return Image.open(BytesIO(response.content)).convert("RGB") images = list(filter(None,[download_image(url) for url in urls])) save_path = "./my_concept" if not os.path.exists(save_path): os.mkdir(save_path) [image.save(f"{save_path}/{i}.jpeg") for i, image in enumerate(images)] image_grid(images, 1, len(images))
Image in a Jupyter notebook
#@title Settings for your newly created concept #@markdown `instance_prompt` is a prompt that should contain a good description of what your object or style is, together with the initializer word `cat_toy` instance_prompt = "<cat-toy> toy" #@param {type:"string"} #@markdown Check the `prior_preservation` option if you would like class of the concept (e.g.: toy, dog, painting) is guaranteed to be preserved. This increases the quality and helps with generalization at the cost of training time prior_preservation = False #@param {type:"boolean"} prior_preservation_class_prompt = "a photo of a cat clay toy" #@param {type:"string"} num_class_images = 12 sample_batch_size = 2 prior_loss_weight = 0.5 prior_preservation_class_folder = "./class_images" class_data_root=prior_preservation_class_folder class_prompt=prior_preservation_class_prompt

Advanced settings for prior preservation (optional)

num_class_images = 12 #@param {type: "number"} sample_batch_size = 2 #@markdown `prior_preservation_weight` determins how strong the class for prior preservation should be prior_loss_weight = 1 #@param {type: "number"} #@markdown If the `prior_preservation_class_folder` is empty, images for the class will be generated with the class prompt. Otherwise, fill this folder with images of items on the same class as your concept (but not images of the concept itself) prior_preservation_class_folder = "./class_images" #@param {type:"string"} class_data_root=prior_preservation_class_folder

Teach the model the new concept (fine-tuning with Dreambooth)

Execute this this sequence of cells to run the training process. The whole process may take from 15 min to 2 hours. (Open this block if you are interested in how this process works under the hood or if you want to change advanced training settings or hyperparameters)

#@title Setup the Classes from pathlib import Path from torchvision import transforms class DreamBoothDataset(Dataset): def __init__( self, instance_data_root, instance_prompt, tokenizer, class_data_root=None, class_prompt=None, size=512, center_crop=False, ): self.size = size self.center_crop = center_crop self.tokenizer = tokenizer self.instance_data_root = Path(instance_data_root) if not self.instance_data_root.exists(): raise ValueError("Instance images root doesn't exists.") self.instance_images_path = list(Path(instance_data_root).iterdir()) self.num_instance_images = len(self.instance_images_path) self.instance_prompt = instance_prompt self._length = self.num_instance_images if class_data_root is not None: self.class_data_root = Path(class_data_root) self.class_data_root.mkdir(parents=True, exist_ok=True) self.class_images_path = list(Path(class_data_root).iterdir()) self.num_class_images = len(self.class_images_path) self._length = max(self.num_class_images, self.num_instance_images) self.class_prompt = class_prompt else: self.class_data_root = None self.image_transforms = transforms.Compose( [ transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __len__(self): return self._length def __getitem__(self, index): example = {} instance_image = Image.open(self.instance_images_path[index % self.num_instance_images]) if not instance_image.mode == "RGB": instance_image = instance_image.convert("RGB") example["instance_images"] = self.image_transforms(instance_image) example["instance_prompt_ids"] = self.tokenizer( self.instance_prompt, padding="do_not_pad", truncation=True, max_length=self.tokenizer.model_max_length, ).input_ids if self.class_data_root: class_image = Image.open(self.class_images_path[index % self.num_class_images]) if not class_image.mode == "RGB": class_image = class_image.convert("RGB") example["class_images"] = self.image_transforms(class_image) example["class_prompt_ids"] = self.tokenizer( self.class_prompt, padding="do_not_pad", truncation=True, max_length=self.tokenizer.model_max_length, ).input_ids return example class PromptDataset(Dataset): def __init__(self, prompt, num_samples): self.prompt = prompt self.num_samples = num_samples def __len__(self): return self.num_samples def __getitem__(self, index): example = {} example["prompt"] = self.prompt example["index"] = index return example
#@title Generate Class Images import gc if(prior_preservation): class_images_dir = Path(class_data_root) if not class_images_dir.exists(): class_images_dir.mkdir(parents=True) cur_class_images = len(list(class_images_dir.iterdir())) if cur_class_images < num_class_images: pipeline = StableDiffusionPipeline.from_pretrained( pretrained_model_name_or_path, revision="fp16", torch_dtype=torch.float16 ).to("cuda") pipeline.enable_attention_slicing() pipeline.set_progress_bar_config(disable=True) num_new_images = num_class_images - cur_class_images print(f"Number of class images to sample: {num_new_images}.") sample_dataset = PromptDataset(class_prompt, num_new_images) sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=sample_batch_size) for example in tqdm(sample_dataloader, desc="Generating class images"): images = pipeline(example["prompt"]).images for i, image in enumerate(images): image.save(class_images_dir / f"{example['index'][i] + cur_class_images}.jpg") pipeline = None gc.collect() del pipeline with torch.no_grad(): torch.cuda.empty_cache()
#@title Load the Stable Diffusion model # Load models and create wrapper for stable diffusion text_encoder = CLIPTextModel.from_pretrained( pretrained_model_name_or_path, subfolder="text_encoder" ) vae = AutoencoderKL.from_pretrained( pretrained_model_name_or_path, subfolder="vae" ) unet = UNet2DConditionModel.from_pretrained( pretrained_model_name_or_path, subfolder="unet" ) tokenizer = CLIPTokenizer.from_pretrained( pretrained_model_name_or_path, subfolder="tokenizer", )
#@title Setting up all training args from argparse import Namespace args = Namespace( pretrained_model_name_or_path=pretrained_model_name_or_path, resolution=vae.sample_size, center_crop=True, train_text_encoder=False, instance_data_dir=save_path, instance_prompt=instance_prompt, learning_rate=5e-06, max_train_steps=300, save_steps=50, train_batch_size=2, # set to 1 if using prior preservation gradient_accumulation_steps=2, max_grad_norm=1.0, mixed_precision="fp16", # set to "fp16" for mixed-precision training. gradient_checkpointing=True, # set this to True to lower the memory usage. use_8bit_adam=True, # use 8bit optimizer from bitsandbytes seed=3434554, with_prior_preservation=prior_preservation, prior_loss_weight=prior_loss_weight, sample_batch_size=2, class_data_dir=prior_preservation_class_folder, class_prompt=prior_preservation_class_prompt, num_class_images=num_class_images, lr_scheduler="constant", lr_warmup_steps=100, output_dir="dreambooth-concept", )
#@title Training function from accelerate.utils import set_seed def training_function(text_encoder, vae, unet): logger = get_logger(__name__) set_seed(args.seed) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, ) # Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate # This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models. # TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate. if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1: raise ValueError( "Gradient accumulation is not supported when training the text encoder in distributed training. " "Please set gradient_accumulation_steps to 1. This feature will be supported in the future." ) vae.requires_grad_(False) if not args.train_text_encoder: text_encoder.requires_grad_(False) if args.gradient_checkpointing: unet.enable_gradient_checkpointing() if args.train_text_encoder: text_encoder.gradient_checkpointing_enable() # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs if args.use_8bit_adam: optimizer_class = bnb.optim.AdamW8bit else: optimizer_class = torch.optim.AdamW params_to_optimize = ( itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters() ) optimizer = optimizer_class( params_to_optimize, lr=args.learning_rate, ) noise_scheduler = DDPMScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler") train_dataset = DreamBoothDataset( instance_data_root=args.instance_data_dir, instance_prompt=args.instance_prompt, class_data_root=args.class_data_dir if args.with_prior_preservation else None, class_prompt=args.class_prompt, tokenizer=tokenizer, size=args.resolution, center_crop=args.center_crop, ) def collate_fn(examples): input_ids = [example["instance_prompt_ids"] for example in examples] pixel_values = [example["instance_images"] for example in examples] # concat class and instance examples for prior preservation if args.with_prior_preservation: input_ids += [example["class_prompt_ids"] for example in examples] pixel_values += [example["class_images"] for example in examples] pixel_values = torch.stack(pixel_values) pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() input_ids = tokenizer.pad( {"input_ids": input_ids}, padding="max_length", return_tensors="pt", max_length=tokenizer.model_max_length ).input_ids batch = { "input_ids": input_ids, "pixel_values": pixel_values, } return batch train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=collate_fn ) lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, ) if args.train_text_encoder: unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, text_encoder, optimizer, train_dataloader, lr_scheduler ) else: unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, optimizer, train_dataloader, lr_scheduler ) weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # Move text_encode and vae to gpu. # For mixed precision training we cast the text_encoder and vae weights to half-precision # as these models are only used for inference, keeping weights in full precision is not required. vae.to(accelerator.device, dtype=weight_dtype) vae.decoder.to("cpu") if not args.train_text_encoder: text_encoder.to(accelerator.device, dtype=weight_dtype) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") # Only show the progress bar once on each machine. progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) progress_bar.set_description("Steps") global_step = 0 for epoch in range(num_train_epochs): unet.train() for step, batch in enumerate(train_dataloader): with accelerator.accumulate(unet): # Convert images to latent space latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() latents = latents * 0.18215 # Sample noise that we'll add to the latents noise = torch.randn_like(latents) bsz = latents.shape[0] # Sample a random timestep for each image timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) timesteps = timesteps.long() # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) # Get the text embedding for conditioning encoder_hidden_states = text_encoder(batch["input_ids"])[0] # Predict the noise residual noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample # Get the target for loss depending on the prediction type if noise_scheduler.config.prediction_type == "epsilon": target = noise elif noise_scheduler.config.prediction_type == "v_prediction": target = noise_scheduler.get_velocity(latents, noise, timesteps) else: raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") if args.with_prior_preservation: # Chunk the noise and noise_pred into two parts and compute the loss on each part separately. noise_pred, noise_pred_prior = torch.chunk(noise_pred, 2, dim=0) target, target_prior = torch.chunk(target, 2, dim=0) # Compute instance loss loss = F.mse_loss(noise_pred.float(), target.float(), reduction="none").mean([1, 2, 3]).mean() # Compute prior loss prior_loss = F.mse_loss(noise_pred_prior.float(), target_prior.float(), reduction="mean") # Add the prior loss to the instance loss. loss = loss + args.prior_loss_weight * prior_loss else: loss = F.mse_loss(noise_pred.float(), target.float(), reduction="mean") accelerator.backward(loss) if accelerator.sync_gradients: params_to_clip = ( itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters() ) accelerator.clip_grad_norm_(unet.parameters(), args.max_grad_norm) optimizer.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 if global_step % args.save_steps == 0: if accelerator.is_main_process: pipeline = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, unet=accelerator.unwrap_model(unet), text_encoder=accelerator.unwrap_model(text_encoder), ) save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") pipeline.save_pretrained(save_path) logs = {"loss": loss.detach().item()} progress_bar.set_postfix(**logs) if global_step >= args.max_train_steps: break accelerator.wait_for_everyone() # Create the pipeline using using the trained modules and save it. if accelerator.is_main_process: pipeline = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, unet=accelerator.unwrap_model(unet), text_encoder=accelerator.unwrap_model(text_encoder), ) pipeline.save_pretrained(args.output_dir)
#@title Run training import accelerate accelerate.notebook_launcher(training_function, args=(text_encoder, vae, unet)) for param in itertools.chain(unet.parameters(), text_encoder.parameters()): if param.grad is not None: del param.grad # free some memory torch.cuda.empty_cache()
Launching training on one GPU.
/usr/local/lib/python3.7/dist-packages/diffusers/utils/deprecation_utils.py:35: FutureWarning: It is deprecated to pass a pretrained model name or path to `from_config`.If you were trying to load a scheduler, please use <class 'diffusers.schedulers.scheduling_ddpm.DDPMScheduler'>.from_pretrained(...) instead. Otherwise, please make sure to pass a configuration dictionary instead. This functionality will be removed in v1.0.0. warnings.warn(warning + message, FutureWarning)

Run the code with your newly trained model

If you have just trained your model with the code above, use the block below to run it.

Also explore the DreamBooth Concepts Library

#@title Save your newly created concept? you may save it privately to your personal profile or collaborate to the [library of concepts](https://huggingface.co/sd-dreambooth-library)? #@markdown If you wish your model to be avaliable for everyone, add it to the public library. If you prefer to use your model privately, add your own profile. save_concept = True #@param {type:"boolean"} #@markdown Once you save it you can use your concept by loading the model on any `from_pretrained` function name_of_your_concept = "Cat toy" #@param {type:"string"} where_to_save_concept = "public_library" #@param ["public_library", "privately_to_my_profile"] #@markdown `hf_token_write`: leave blank if you logged in with a token with `write access` in the [Initial Setup](#scrollTo=KbzZ9xe6dWwf). If not, [go to your tokens settings and create a write access token](https://huggingface.co/settings/tokens) hf_token_write = "" #@param {type:"string"} if(save_concept): from slugify import slugify from huggingface_hub import HfApi, HfFolder, CommitOperationAdd from huggingface_hub import create_repo from IPython.display import display_markdown api = HfApi() your_username = api.whoami()["name"] pipe = StableDiffusionPipeline.from_pretrained( args.output_dir, torch_dtype=torch.float16, ).to("cuda") os.makedirs("fp16_model",exist_ok=True) pipe.save_pretrained("fp16_model") if(where_to_save_concept == "public_library"): repo_id = f"sd-dreambooth-library/{slugify(name_of_your_concept)}" #Join the Concepts Library organization if you aren't part of it already !curl -X POST -H 'Authorization: Bearer '$hf_token -H 'Content-Type: application/json' https://huggingface.co/organizations/sd-dreambooth-library/share/SSeOwppVCscfTEzFGQaqpfcjukVeNrKNHX else: repo_id = f"{your_username}/{slugify(name_of_your_concept)}" output_dir = args.output_dir if(not hf_token_write): with open(HfFolder.path_token, 'r') as fin: hf_token = fin.read(); else: hf_token = hf_token_write images_upload = os.listdir("my_concept") image_string = "" #repo_id = f"sd-dreambooth-library/{slugify(name_of_your_concept)}" for i, image in enumerate(images_upload): image_string = f'''{image_string}![image {i}](https://huggingface.co/{repo_id}/resolve/main/concept_images/{image}) ''' readme_text = f'''--- license: creativeml-openrail-m tags: - text-to-image --- ### {name_of_your_concept} on Stable Diffusion via Dreambooth #### model by {api.whoami()["name"]} This your the Stable Diffusion model fine-tuned the {name_of_your_concept} concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt`: **{instance_prompt}** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: {image_string} ''' #Save the readme to a file readme_file = open("README.md", "w") readme_file.write(readme_text) readme_file.close() #Save the token identifier to a file text_file = open("token_identifier.txt", "w") text_file.write(instance_prompt) text_file.close() operations = [ CommitOperationAdd(path_in_repo="token_identifier.txt", path_or_fileobj="token_identifier.txt"), CommitOperationAdd(path_in_repo="README.md", path_or_fileobj="README.md"), ] create_repo(repo_id,private=True, token=hf_token) api.create_commit( repo_id=repo_id, operations=operations, commit_message=f"Upload the concept {name_of_your_concept} embeds and token", token=hf_token ) api.upload_folder( folder_path="fp16_model", path_in_repo="", repo_id=repo_id, token=hf_token ) api.upload_folder( folder_path=save_path, path_in_repo="concept_images", repo_id=repo_id, token=hf_token ) display_markdown(f'''## Your concept was saved successfully. [Click here to access it](https://huggingface.co/{repo_id}) ''', raw=True)
#@title Set up the pipeline from diffusers import DPMSolverMultistepScheduler try: pipe except NameError: pipe = StableDiffusionPipeline.from_pretrained( args.output_dir, scheduler = DPMSolverMultistepScheduler.from_pretrained(args.output_dir, subfolder="scheduler"), torch_dtype=torch.float16, ).to("cuda")
#@title Run the Stable Diffusion pipeline with interactive UI Demo on Gradio #@markdown Run this cell to get an interactive demo where you can run the model using Gradio #@markdown ![](https://i.imgur.com/2ACLWu2.png) import gradio as gr def inference(prompt, num_samples): all_images = [] images = pipe(prompt, num_images_per_prompt=num_samples, num_inference_steps=25).images all_images.extend(images) return all_images with gr.Blocks() as demo: with gr.Row(): with gr.Column(): prompt = gr.Textbox(label="prompt") samples = gr.Slider(label="Samples",value=1) run = gr.Button(value="Run") with gr.Column(): gallery = gr.Gallery(show_label=False) run.click(inference, inputs=[prompt,samples], outputs=gallery) gr.Examples([["a photo of sks toy riding a bicycle", 1,1]], [prompt,samples], gallery, inference, cache_examples=False) demo.launch()
#@title Run the Stable Diffusion pipeline on Colab #@markdown Don't forget to use the placeholder token in your prompt prompt = "a \u003Ccat-toy> in mad max fury road" #@param {type:"string"} num_samples = 2 #@param {type:"number"} num_rows = 1 #@param {type:"number"} all_images = [] for _ in range(num_rows): images = pipe(prompt, num_images_per_prompt=num_samples, num_inference_steps=25, guidance_scale=9).images all_images.extend(images) grid = image_grid(all_images, num_rows, num_samples) grid