Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
huggingface
GitHub Repository: huggingface/notebooks
Path: blob/main/diffusers_doc/ko/pytorch/conditional_image_generation.ipynb
5551 views
Kernel: Unknown Kernel

조건부 이미지 생성

조건부 이미지 생성을 사용하면 텍스트 프롬프트에서 이미지를 생성할 수 있습니다. 텍스트는 임베딩으로 변환되며, 임베딩은 노이즈에서 이미지를 생성하도록 모델을 조건화하는 데 사용됩니다.

DiffusionPipeline은 추론을 위해 사전 훈련된 diffusion 시스템을 사용하는 가장 쉬운 방법입니다.

먼저 DiffusionPipeline의 인스턴스를 생성하고 다운로드할 파이프라인 체크포인트를 지정합니다.

이 가이드에서는 잠재 Diffusion과 함께 텍스트-이미지 생성에 DiffusionPipeline을 사용합니다:

from diffusers import DiffusionPipeline generator = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")

DiffusionPipeline은 모든 모델링, 토큰화, 스케줄링 구성 요소를 다운로드하고 캐시합니다. 이 모델은 약 14억 개의 파라미터로 구성되어 있기 때문에 GPU에서 실행할 것을 강력히 권장합니다. PyTorch에서와 마찬가지로 생성기 객체를 GPU로 이동할 수 있습니다:

generator.to("cuda")

이제 텍스트 프롬프트에서 생성기를 사용할 수 있습니다:

image = generator("An image of a squirrel in Picasso style").images[0]

출력값은 기본적으로 PIL.Image 객체로 래핑됩니다.

호출하여 이미지를 저장할 수 있습니다:

image.save("image_of_squirrel_painting.png")

아래 스페이스를 사용해보고 안내 배율 매개변수를 자유롭게 조정하여 이미지 품질에 어떤 영향을 미치는지 확인해 보세요!