CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
huggingface

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

GitHub Repository: huggingface/notebooks
Path: blob/main/sagemaker/05_spot_instances/scripts/train.py
Views: 2546
1
import argparse
2
import logging
3
import os
4
import random
5
import sys
6
7
import numpy as np
8
import torch
9
from datasets import load_from_disk, load_metric
10
from transformers import AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments
11
from transformers.trainer_utils import get_last_checkpoint
12
13
if __name__ == "__main__":
14
15
parser = argparse.ArgumentParser()
16
17
# hyperparameters sent by the client are passed as command-line arguments to the script.
18
parser.add_argument("--epochs", type=int, default=3)
19
parser.add_argument("--train_batch_size", type=int, default=32)
20
parser.add_argument("--eval_batch_size", type=int, default=64)
21
parser.add_argument("--warmup_steps", type=int, default=500)
22
parser.add_argument("--model_id", type=str)
23
parser.add_argument("--learning_rate", type=str, default=5e-5)
24
parser.add_argument("--fp16", type=bool, default=True)
25
parser.add_argument("--output_dir", type=str)
26
27
# Data, model, and output directories
28
parser.add_argument("--output_data_dir", type=str, default=os.environ["SM_OUTPUT_DATA_DIR"])
29
parser.add_argument("--n_gpus", type=str, default=os.environ["SM_NUM_GPUS"])
30
parser.add_argument("--training_dir", type=str, default=os.environ["SM_CHANNEL_TRAIN"])
31
parser.add_argument("--test_dir", type=str, default=os.environ["SM_CHANNEL_TEST"])
32
33
args, _ = parser.parse_known_args()
34
35
# Set up logging
36
logger = logging.getLogger(__name__)
37
38
logging.basicConfig(
39
level=logging.getLevelName("INFO"),
40
handlers=[logging.StreamHandler(sys.stdout)],
41
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
42
)
43
44
# load datasets
45
train_dataset = load_from_disk(args.training_dir)
46
test_dataset = load_from_disk(args.test_dir)
47
48
logger.info(f" loaded train_dataset length is: {len(train_dataset)}")
49
logger.info(f" loaded test_dataset length is: {len(test_dataset)}")
50
51
metric = load_metric("accuracy")
52
53
def compute_metrics(eval_pred):
54
predictions, labels = eval_pred
55
predictions = np.argmax(predictions, axis=1)
56
return metric.compute(predictions=predictions, references=labels)
57
58
# Prepare model labels - useful in inference API
59
labels = train_dataset.features["labels"].names
60
num_labels = len(labels)
61
label2id, id2label = dict(), dict()
62
for i, label in enumerate(labels):
63
label2id[label] = str(i)
64
id2label[str(i)] = label
65
66
# download model from model hub
67
model = AutoModelForSequenceClassification.from_pretrained(
68
args.model_id, num_labels=num_labels, label2id=label2id, id2label=id2label
69
)
70
tokenizer = AutoTokenizer.from_pretrained(args.model_id)
71
72
# define training args
73
training_args = TrainingArguments(
74
output_dir=args.output_dir,
75
overwrite_output_dir=True if get_last_checkpoint(args.output_dir) is not None else False,
76
num_train_epochs=args.epochs,
77
per_device_train_batch_size=args.train_batch_size,
78
per_device_eval_batch_size=args.eval_batch_size,
79
warmup_steps=args.warmup_steps,
80
fp16=args.fp16,
81
evaluation_strategy="epoch",
82
save_strategy="epoch",
83
save_total_limit=2,
84
logging_dir=f"{args.output_data_dir}/logs",
85
learning_rate=float(args.learning_rate),
86
load_best_model_at_end=True,
87
metric_for_best_model="accuracy",
88
)
89
90
# create Trainer instance
91
trainer = Trainer(
92
model=model,
93
args=training_args,
94
compute_metrics=compute_metrics,
95
train_dataset=train_dataset,
96
eval_dataset=test_dataset,
97
tokenizer=tokenizer,
98
)
99
100
# train model
101
if get_last_checkpoint(args.output_dir) is not None:
102
logger.info("***** continue training *****")
103
last_checkpoint = get_last_checkpoint(args.output_dir)
104
trainer.train(resume_from_checkpoint=last_checkpoint)
105
else:
106
trainer.train()
107
108
# evaluate model
109
eval_result = trainer.evaluate(eval_dataset=test_dataset)
110
111
# writes eval result to file which can be accessed later in s3 ouput
112
with open(os.path.join(args.output_data_dir, "eval_results.txt"), "w") as writer:
113
print(f"***** Eval results *****")
114
for key, value in sorted(eval_result.items()):
115
writer.write(f"{key} = {value}\n")
116
print(f"{key} = {value}\n")
117
118
# Saves the model to s3 uses os.environ["SM_MODEL_DIR"] to make sure checkpointing works
119
trainer.save_model(os.environ["SM_MODEL_DIR"])
120
121