CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
huggingface

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

GitHub Repository: huggingface/notebooks
Path: blob/main/sagemaker/18_inferentia_inference/sagemaker-notebook.ipynb
Views: 2542
Kernel: Python 3

Accelerate BERT Inference with Hugging Face Transformers and AWS inferentia

In this end-to-end tutorial, you will learn how to speed up BERT inference for text classification with Hugging Face Transformers, Amazon SageMaker, and AWS Inferentia.

You will learn how to:

  1. Convert your Hugging Face Transformer to AWS Neuron (Inferentia)

  2. Create a custom inference.py script for text-classification

  3. Create and upload the neuron model and inference script to Amazon S3

  4. Deploy a Real-time Inference Endpoint on Amazon SageMaker

  5. Run and evaluate Inference performance of BERT on Inferentia

Let's get started! 🚀


If you are going to use Sagemaker in a local environment (not SageMaker Studio or Notebook Instances). You need access to an IAM Role with the required permissions for Sagemaker. You can find here more about it.

1. Convert your Hugging Face Transformer to AWS Neuron

We are going to use the AWS Neuron SDK for AWS Inferentia. The Neuron SDK includes a deep learning compiler, runtime, and tools for converting and compiling PyTorch and TensorFlow models to neuron compatible models, which can be run on EC2 Inf1 instances.

As a first step, we need to install the Neuron SDK and the required packages.

Tip: If you are using Amazon SageMaker Notebook Instances or Studio you can go with the conda_python3 conda kernel.

# Set Pip repository to point to the Neuron repository !pip config set global.extra-index-url https://pip.repos.neuron.amazonaws.com # Install Neuron PyTorch !pip install torch-neuron==1.9.1.* neuron-cc[tensorflow] sagemaker>=2.79.0 transformers==4.12.3 --upgrade

After we have installed the Neuron SDK we can convert load and convert our model. Neuron models are converted using torch_neuron with its trace method similar to torchscript. You can find more information in our documentation.

To be able to convert our model we first need to select the model we want to use for our text classification pipeline from hf.co/models. For this example lets go with distilbert-base-uncased-finetuned-sst-2-english but this can be easily adjusted with other BERT-like models.

model_id = "distilbert-base-uncased-finetuned-sst-2-english"

At the time of writing, the AWS Neuron SDK does not support dynamic shapes, which means that the input size needs to be static for compiling and inference.

In simpler terms, this means when the model is compiled with an input of batch size 1 and sequence length of 16. The model can only run inference on inputs with the same shape.

When using a t2.medium instance the compiling takes around 2-3 minutes

import os import tensorflow # to workaround a protobuf version conflict issue import torch import torch.neuron from transformers import AutoTokenizer, AutoModelForSequenceClassification # load tokenizer and model tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForSequenceClassification.from_pretrained(model_id, torchscript=True) # create dummy input for max length 128 dummy_input = "dummy input which will be padded later" max_length = 128 embeddings = tokenizer(dummy_input, max_length=max_length, padding="max_length",return_tensors="pt") neuron_inputs = tuple(embeddings.values()) # compile model with torch.neuron.trace and update config model_neuron = torch.neuron.trace(model, neuron_inputs) model.config.update({"traced_sequence_length": max_length}) # save tokenizer, neuron model and config for later use save_dir="tmp" os.makedirs("tmp",exist_ok=True) model_neuron.save(os.path.join(save_dir,"neuron_model.pt")) tokenizer.save_pretrained(save_dir) model.config.save_pretrained(save_dir)
Couldn't call 'get_role' to get Role ARN from role name philippschmid to get Role path.
sagemaker role arn: arn:aws:iam::558105141721:role/sagemaker_execution_role sagemaker bucket: sagemaker-us-east-1-558105141721 sagemaker session region: us-east-1

2. Create a custom inference.py script for text-classification

The Hugging Face Inference Toolkit supports zero-code deployments on top of the pipeline feature from 🤗 Transformers. This allows users to deploy Hugging Face transformers without an inference script [Example].

Currently is this feature not supported with AWS Inferentia, which means we need to provide an inference.py for running inference.

If you would be interested in support for zero-code deployments for inferentia let us know on the forum.


To use the inference script, we need to create an inference.py script. In our example, we are going to overwrite the model_fn to load our neuron model and the predict_fn to create a text-classification pipeline.

If you want to know more about the inference.py script check out this example. It explains amongst other things what the model_fn and predict_fn are.

!mkdir code

We are using the NEURON_RT_NUM_CORES=1 to make sure that each HTTP worker uses 1 Neuron core to maximize throughput.

%%writefile code/inference.py import os from transformers import AutoConfig, AutoTokenizer import torch import torch.neuron # To use one neuron core per worker os.environ["NEURON_RT_NUM_CORES"] = "1" # saved weights name AWS_NEURON_TRACED_WEIGHTS_NAME = "neuron_model.pt" def model_fn(model_dir): # load tokenizer and neuron model from model_dir tokenizer = AutoTokenizer.from_pretrained(model_dir) model = torch.jit.load(os.path.join(model_dir, AWS_NEURON_TRACED_WEIGHTS_NAME)) model_config = AutoConfig.from_pretrained(model_dir) return model, tokenizer, model_config def predict_fn(data, model_tokenizer_model_config): # destruct model, tokenizer and model config model, tokenizer, model_config = model_tokenizer_model_config # create embeddings for inputs inputs = data.pop("inputs", data) embeddings = tokenizer( inputs, return_tensors="pt", max_length=model_config.traced_sequence_length, padding="max_length", truncation=True, ) # convert to tuple for neuron model neuron_inputs = tuple(embeddings.values()) # run prediciton with torch.no_grad(): predictions = model(*neuron_inputs)[0] scores = torch.nn.Softmax(dim=1)(predictions) # return dictonary, which will be json serializable return [{"label": model_config.id2label[item.argmax().item()], "score": item.max().item()} for item in scores]
Overwriting code/inference.py

3. Create and upload the neuron model and inference script to Amazon S3

Before we can deploy our neuron model to Amazon SageMaker we need to create a model.tar.gz archive with all our model artifacts saved into tmp/, e.g. neuron_model.pt and upload this to Amazon S3.

To do this we need to set up our permissions.

import sagemaker import boto3 sess = sagemaker.Session() # sagemaker session bucket -> used for uploading data, models and logs # sagemaker will automatically create this bucket if it not exists sagemaker_session_bucket=None if sagemaker_session_bucket is None and sess is not None: # set to default bucket if a bucket name is not given sagemaker_session_bucket = sess.default_bucket() try: role = sagemaker.get_execution_role() except ValueError: iam = boto3.client('iam') role = iam.get_role(RoleName='sagemaker_execution_role')['Role']['Arn'] sess = sagemaker.Session(default_bucket=sagemaker_session_bucket) print(f"sagemaker role arn: {role}") print(f"sagemaker bucket: {sess.default_bucket()}") print(f"sagemaker session region: {sess.boto_region_name}")

Next, we create our model.tar.gz.The inference.py script will be placed into a code/ folder.

# copy inference.py into the code/ directory of the model directory. !cp -r code/ tmp/code/ # create a model.tar.gz archive with all the model artifacts and the inference.py script. %cd tmp !tar zcvf model.tar.gz * %cd ..

Now we can upload our model.tar.gz to our session S3 bucket with sagemaker.

from sagemaker.s3 import S3Uploader # create s3 uri s3_model_path = f"s3://{sess.default_bucket()}/{model_id}" # upload model.tar.gz s3_model_uri = S3Uploader.upload(local_path="tmp/model.tar.gz",desired_s3_uri=s3_model_path) print(f"model artifcats uploaded to {s3_model_uri}")

4. Deploy a Real-time Inference Endpoint on Amazon SageMaker

After we have uploaded our model.tar.gz to Amazon S3 can we create a custom HuggingfaceModel. This class will be used to create and deploy our real-time inference endpoint on Amazon SageMaker.

from sagemaker.huggingface.model import HuggingFaceModel # create Hugging Face Model Class huggingface_model = HuggingFaceModel( model_data=s3_model_uri, # path to your model and script role=role, # iam role with permissions to create an Endpoint transformers_version="4.12", # transformers version used pytorch_version="1.9", # pytorch version used py_version='py37', # python version used ) # Let SageMaker know that we've already compiled the model via neuron-cc huggingface_model._is_compiled_model = True # deploy the endpoint endpoint predictor = huggingface_model.deploy( initial_instance_count=1, # number of instances instance_type="ml.inf1.xlarge" # AWS Inferentia Instance )

5. Run and evaluate Inference performance of BERT on Inferentia

The .deploy() returns an HuggingFacePredictor object which can be used to request inference.

data = { "inputs": "the mesmerizing performances of the leads keep the film grounded and keep the audience riveted .", } res = predictor.predict(data=data) res

We managed to deploy our neuron compiled BERT to AWS Inferentia on Amazon SageMaker. Now, let's test its performance of it. As a dummy load test will we loop and send 10000 synchronous requests to our endpoint.

# send 10000 requests for i in range(10000): resp = predictor.predict( data={"inputs": "it 's a charming and often affecting journey ."} )

Let's inspect the performance in cloudwatch.

print(f"https://console.aws.amazon.com/cloudwatch/home?region={sess.boto_region_name}#metricsV2:graph=~(metrics~(~(~'AWS*2fSageMaker~'ModelLatency~'EndpointName~'{predictor.endpoint_name}~'VariantName~'AllTraffic))~view~'timeSeries~stacked~false~region~'{sess.boto_region_name}~start~'-PT5M~end~'P0D~stat~'Average~period~30);query=~'*7bAWS*2fSageMaker*2cEndpointName*2cVariantName*7d*20{predictor.endpoint_name}")

The average latency for our BERT model is 5-6ms for a sequence length of 128.

performance

Delete model and endpoint

To clean up, we can delete the model and endpoint.

predictor.delete_model() predictor.delete_endpoint()