from transformers import DonutProcessor, VisionEncoderDecoderModel
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
def model_fn(model_dir):
processor = DonutProcessor.from_pretrained(model_dir)
model = VisionEncoderDecoderModel.from_pretrained(model_dir)
model.to(device)
return model, processor
def predict_fn(data, model_and_processor):
model, processor = model_and_processor
image = data.get("inputs")
pixel_values = processor.feature_extractor(image, return_tensors="pt").pixel_values
task_prompt = "<s>"
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
outputs = model.generate(
pixel_values.to(device),
decoder_input_ids=decoder_input_ids.to(device),
max_length=model.decoder.config.max_position_embeddings,
early_stopping=True,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=1,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,
)
prediction = processor.batch_decode(outputs.sequences)[0]
prediction = processor.token2json(prediction)
return prediction