CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
huggingface

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

GitHub Repository: huggingface/notebooks
Path: blob/main/transformers_doc/ko/pytorch/image_classification.ipynb
Views: 2548
Kernel: Unknown Kernel
# Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git

이미지 분류[[image-classification]]

#@title from IPython.display import HTML HTML('<iframe width="560" height="315" src="https://www.youtube.com/embed/tjAIM7BOYhw?rel=0&amp;controls=0&amp;showinfo=0" frameborder="0" allowfullscreen></iframe>')

이미지 분류는 이미지에 레이블 또는 클래스를 할당합니다. 텍스트 또는 오디오 분류와 달리 입력은 이미지를 구성하는 픽셀 값입니다. 이미지 분류에는 자연재해 후 피해 감지, 농작물 건강 모니터링, 의료 이미지에서 질병의 징후 검사 지원 등 다양한 응용 사례가 있습니다.

이 가이드에서는 다음을 설명합니다:

  1. Food-101 데이터 세트에서 ViT를 미세 조정하여 이미지에서 식품 항목을 분류합니다.

  2. 추론을 위해 미세 조정 모델을 사용합니다.

[removed] 이 튜토리얼에서 설명하는 작업은 다음 모델 아키텍처에 의해 지원됩니다:

BEiT, BiT, ConvNeXT, ConvNeXTV2, CvT, Data2VecVision, DeiT, DiNAT, EfficientFormer, EfficientNet, FocalNet, ImageGPT, LeViT, MobileNetV1, MobileNetV2, MobileViT, NAT, Perceiver, PoolFormer, RegNet, ResNet, SegFormer, Swin Transformer, Swin Transformer V2, VAN, ViT, ViT Hybrid, ViTMSN

시작하기 전에, 필요한 모든 라이브러리가 설치되어 있는지 확인하세요:

pip install transformers datasets evaluate

Hugging Face 계정에 로그인하여 모델을 업로드하고 커뮤니티에 공유하는 것을 권장합니다. 메시지가 표시되면, 토큰을 입력하여 로그인하세요:

from huggingface_hub import notebook_login notebook_login()

Food-101 데이터 세트 가져오기[[load-food101-dataset]]

🤗 Datasets 라이브러리에서 Food-101 데이터 세트의 더 작은 부분 집합을 가져오는 것으로 시작합니다. 이렇게 하면 전체 데이터 세트에 대한 훈련에 많은 시간을 할애하기 전에 실험을 통해 모든 것이 제대로 작동하는지 확인할 수 있습니다.

from datasets import load_dataset food = load_dataset("food101", split="train[:5000]")

데이터 세트의 traintrain_test_split 메소드를 사용하여 훈련 및 테스트 세트로 분할하세요:

food = food.train_test_split(test_size=0.2)

그리고 예시를 살펴보세요:

food["train"][0]
{'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=512x512 at 0x7F52AFC8AC50>, 'label': 79}

데이터 세트의 각 예제에는 두 개의 필드가 있습니다:

  • image: 식품 항목의 PIL 이미지

  • label: 식품 항목의 레이블 클래스

모델이 레이블 ID에서 레이블 이름을 쉽게 가져올 수 있도록 레이블 이름을 정수로 매핑하고, 정수를 레이블 이름으로 매핑하는 사전을 만드세요:

labels = food["train"].features["label"].names label2id, id2label = dict(), dict() for i, label in enumerate(labels): label2id[label] = str(i) id2label[str(i)] = label

이제 레이블 ID를 레이블 이름으로 변환할 수 있습니다:

id2label[str(79)]
'prime_rib'

전처리[[preprocess]]

다음 단계는 이미지를 텐서로 처리하기 위해 ViT 이미지 프로세서를 가져오는 것입니다:

from transformers import AutoImageProcessor checkpoint = "google/vit-base-patch16-224-in21k" image_processor = AutoImageProcessor.from_pretrained(checkpoint)

이미지에 몇 가지 이미지 변환을 적용하여 과적합에 대해 모델을 더 견고하게 만듭니다. 여기서 Torchvision의 transforms 모듈을 사용하지만, 원하는 이미지 라이브러리를 사용할 수도 있습니다.

이미지의 임의 부분을 크롭하고 크기를 조정한 다음, 이미지 평균과 표준 편차로 정규화하세요:

from torchvision.transforms import RandomResizedCrop, Compose, Normalize, ToTensor normalize = Normalize(mean=image_processor.image_mean, std=image_processor.image_std) size = ( image_processor.size["shortest_edge"] if "shortest_edge" in image_processor.size else (image_processor.size["height"], image_processor.size["width"]) ) _transforms = Compose([RandomResizedCrop(size), ToTensor(), normalize])

그런 다음 전처리 함수를 만들어 변환을 적용하고 이미지의 pixel_values(모델에 대한 입력)를 반환하세요:

def transforms(examples): examples["pixel_values"] = [_transforms(img.convert("RGB")) for img in examples["image"]] del examples["image"] return examples

전체 데이터 세트에 전처리 기능을 적용하려면 🤗 Datasets with_transform을 사용합니다. 데이터 세트의 요소를 가져올 때 변환이 즉시 적용됩니다:

food = food.with_transform(transforms)

이제 DefaultDataCollator를 사용하여 예제 배치를 만듭니다. 🤗 Transformers의 다른 데이터 콜레이터와 달리, DefaultDataCollator는 패딩과 같은 추가적인 전처리를 적용하지 않습니다.

from transformers import DefaultDataCollator data_collator = DefaultDataCollator()

평가[[evaluate]]

훈련 중에 평가 지표를 포함하면 모델의 성능을 평가하는 데 도움이 되는 경우가 많습니다. 🤗 Evaluate 라이브러리로 평가 방법을 빠르게 가져올 수 있습니다. 이 작업에서는 accuracy 평가 지표를 가져옵니다. (🤗 Evaluate 빠른 둘러보기를 참조하여 평가 지표를 가져오고 계산하는 방법에 대해 자세히 알아보세요):

import evaluate accuracy = evaluate.load("accuracy")

그런 다음 예측과 레이블을 compute에 전달하여 정확도를 계산하는 함수를 만듭니다:

import numpy as np def compute_metrics(eval_pred): predictions, labels = eval_pred predictions = np.argmax(predictions, axis=1) return accuracy.compute(predictions=predictions, references=labels)

이제 compute_metrics 함수를 사용할 준비가 되었으며, 훈련을 설정하면 이 함수로 되돌아올 것입니다.

훈련[[train]]

[removed]

Trainer를 사용하여 모델을 미세 조정하는 방법에 익숙하지 않은 경우, 여기에서 기본 튜토리얼을 확인하세요!

이제 모델을 훈련시킬 준비가 되었습니다! AutoModelForImageClassification로 ViT를 가져옵니다. 예상되는 레이블 수, 레이블 매핑 및 레이블 수를 지정하세요:

from transformers import AutoModelForImageClassification, TrainingArguments, Trainer model = AutoModelForImageClassification.from_pretrained( checkpoint, num_labels=len(labels), id2label=id2label, label2id=label2id, )

이제 세 단계만 거치면 끝입니다:

  1. TrainingArguments에서 훈련 하이퍼파라미터를 정의하세요. image 열이 삭제되기 때문에 미사용 열을 제거하지 않는 것이 중요합니다. image 열이 없으면 pixel_values을 생성할 수 없습니다. 이 동작을 방지하려면 remove_unused_columns=False로 설정하세요! 다른 유일한 필수 매개변수는 모델 저장 위치를 지정하는 output_dir입니다. push_to_hub=True로 설정하면 이 모델을 허브에 푸시합니다(모델을 업로드하려면 Hugging Face에 로그인해야 합니다). 각 에폭이 끝날 때마다, Trainer가 정확도를 평가하고 훈련 체크포인트를 저장합니다.

  2. Trainer에 모델, 데이터 세트, 토크나이저, 데이터 콜레이터 및 compute_metrics 함수와 함께 훈련 인수를 전달하세요.

  3. train()을 호출하여 모델을 미세 조정하세요.

training_args = TrainingArguments( output_dir="my_awesome_food_model", remove_unused_columns=False, evaluation_strategy="epoch", save_strategy="epoch", learning_rate=5e-5, per_device_train_batch_size=16, gradient_accumulation_steps=4, per_device_eval_batch_size=16, num_train_epochs=3, warmup_ratio=0.1, logging_steps=10, load_best_model_at_end=True, metric_for_best_model="accuracy", push_to_hub=True, ) trainer = Trainer( model=model, args=training_args, data_collator=data_collator, train_dataset=food["train"], eval_dataset=food["test"], tokenizer=image_processor, compute_metrics=compute_metrics, ) trainer.train()

훈련이 완료되면, 모든 사람이 모델을 사용할 수 있도록 push_to_hub() 메소드로 모델을 허브에 공유하세요:

trainer.push_to_hub()
[removed]

이미지 분류를 위한 모델을 미세 조정하는 자세한 예제는 다음 PyTorch notebook을 참조하세요.

추론[[inference]]

좋아요, 이제 모델을 미세 조정했으니 추론에 사용할 수 있습니다!

추론을 수행하고자 하는 이미지를 가져와봅시다:

ds = load_dataset("food101", split="validation[:10]") image = ds["image"][0]
image of beignets

미세 조정 모델로 추론을 시도하는 가장 간단한 방법은 pipeline()을 사용하는 것입니다. 모델로 이미지 분류를 위한 pipeline을 인스턴스화하고 이미지를 전달합니다:

from transformers import pipeline classifier = pipeline("image-classification", model="my_awesome_food_model") classifier(image)
[{'score': 0.31856709718704224, 'label': 'beignets'}, {'score': 0.015232225880026817, 'label': 'bruschetta'}, {'score': 0.01519392803311348, 'label': 'chicken_wings'}, {'score': 0.013022331520915031, 'label': 'pork_chop'}, {'score': 0.012728818692266941, 'label': 'prime_rib'}]

원한다면, pipeline의 결과를 수동으로 복제할 수도 있습니다:

이미지를 전처리하기 위해 이미지 프로세서를 가져오고 input을 PyTorch 텐서로 반환합니다:

from transformers import AutoImageProcessor import torch image_processor = AutoImageProcessor.from_pretrained("my_awesome_food_model") inputs = image_processor(image, return_tensors="pt")

입력을 모델에 전달하고 logits을 반환합니다:

from transformers import AutoModelForImageClassification model = AutoModelForImageClassification.from_pretrained("my_awesome_food_model") with torch.no_grad(): logits = model(**inputs).logits

확률이 가장 높은 예측 레이블을 가져오고, 모델의 id2label 매핑을 사용하여 레이블로 변환합니다:

predicted_label = logits.argmax(-1).item() model.config.id2label[predicted_label]
'beignets'