Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Path: blob/master/Dockerfile
Views: 475
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license # Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch FROM nvcr.io/nvidia/pytorch:21.10-py3 # Install linux packages RUN apt update && apt install -y zip htop screen libgl1-mesa-glx # Install python dependencies COPY requirements.txt . RUN python -m pip install --upgrade pip RUN pip uninstall -y nvidia-tensorboard nvidia-tensorboard-plugin-dlprof RUN pip install --no-cache -r requirements.txt coremltools onnx gsutil notebook wandb>=0.12.2 RUN pip install --no-cache -U torch torchvision numpy Pillow # RUN pip install --no-cache torch==1.10.0+cu113 torchvision==0.11.1+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html # Create working directory RUN mkdir -p /usr/src/app WORKDIR /usr/src/app # Copy contents COPY . /usr/src/app # Downloads to user config dir ADD https://ultralytics.com/assets/Arial.ttf /root/.config/Ultralytics/ # Set environment variables # ENV HOME=/usr/src/app # Usage Examples ------------------------------------------------------------------------------------------------------- # Build and Push # t=ultralytics/yolov5:latest && sudo docker build -t $t . && sudo docker push $t # Pull and Run # t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t # Pull and Run with local directory access # t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/datasets:/usr/src/datasets $t # Kill all # sudo docker kill $(sudo docker ps -q) # Kill all image-based # sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov5:latest) # Bash into running container # sudo docker exec -it 5a9b5863d93d bash # Bash into stopped container # id=$(sudo docker ps -qa) && sudo docker start $id && sudo docker exec -it $id bash # Clean up # docker system prune -a --volumes # Update Ubuntu drivers # https://www.maketecheasier.com/install-nvidia-drivers-ubuntu/ # DDP test # python -m torch.distributed.run --nproc_per_node 2 --master_port 1 train.py --epochs 3 # GCP VM from Image # docker.io/ultralytics/yolov5:latest