CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
hukaixuan19970627

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

GitHub Repository: hukaixuan19970627/yolov5_obb
Path: blob/master/hubconf.py
Views: 475
1
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
"""
3
PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5/
4
5
Usage:
6
import torch
7
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
8
model = torch.hub.load('ultralytics/yolov5:master', 'custom', 'path/to/yolov5s.onnx') # file from branch
9
"""
10
11
import torch
12
13
14
def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
15
"""Creates a specified YOLOv5 model
16
17
Arguments:
18
name (str): name of model, i.e. 'yolov5s'
19
pretrained (bool): load pretrained weights into the model
20
channels (int): number of input channels
21
classes (int): number of model classes
22
autoshape (bool): apply YOLOv5 .autoshape() wrapper to model
23
verbose (bool): print all information to screen
24
device (str, torch.device, None): device to use for model parameters
25
26
Returns:
27
YOLOv5 pytorch model
28
"""
29
from pathlib import Path
30
31
from models.common import AutoShape, DetectMultiBackend
32
from models.yolo import Model
33
from utils.downloads import attempt_download
34
from utils.general import check_requirements, intersect_dicts, set_logging
35
from utils.torch_utils import select_device
36
37
check_requirements(exclude=('tensorboard', 'thop', 'opencv-python'))
38
set_logging(verbose=verbose)
39
40
name = Path(name)
41
path = name.with_suffix('.pt') if name.suffix == '' else name # checkpoint path
42
try:
43
device = select_device(('0' if torch.cuda.is_available() else 'cpu') if device is None else device)
44
45
if pretrained and channels == 3 and classes == 80:
46
model = DetectMultiBackend(path, device=device) # download/load FP32 model
47
# model = models.experimental.attempt_load(path, map_location=device) # download/load FP32 model
48
else:
49
cfg = list((Path(__file__).parent / 'models').rglob(f'{path.stem}.yaml'))[0] # model.yaml path
50
model = Model(cfg, channels, classes) # create model
51
if pretrained:
52
ckpt = torch.load(attempt_download(path), map_location=device) # load
53
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
54
csd = intersect_dicts(csd, model.state_dict(), exclude=['anchors']) # intersect
55
model.load_state_dict(csd, strict=False) # load
56
if len(ckpt['model'].names) == classes:
57
model.names = ckpt['model'].names # set class names attribute
58
if autoshape:
59
model = AutoShape(model) # for file/URI/PIL/cv2/np inputs and NMS
60
return model.to(device)
61
62
except Exception as e:
63
help_url = 'https://github.com/ultralytics/yolov5/issues/36'
64
s = 'Cache may be out of date, try `force_reload=True`. See %s for help.' % help_url
65
raise Exception(s) from e
66
67
68
def custom(path='path/to/model.pt', autoshape=True, verbose=True, device=None):
69
# YOLOv5 custom or local model
70
return _create(path, autoshape=autoshape, verbose=verbose, device=device)
71
72
73
def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
74
# YOLOv5-nano model https://github.com/ultralytics/yolov5
75
return _create('yolov5n', pretrained, channels, classes, autoshape, verbose, device)
76
77
78
def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
79
# YOLOv5-small model https://github.com/ultralytics/yolov5
80
return _create('yolov5s', pretrained, channels, classes, autoshape, verbose, device)
81
82
83
def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
84
# YOLOv5-medium model https://github.com/ultralytics/yolov5
85
return _create('yolov5m', pretrained, channels, classes, autoshape, verbose, device)
86
87
88
def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
89
# YOLOv5-large model https://github.com/ultralytics/yolov5
90
return _create('yolov5l', pretrained, channels, classes, autoshape, verbose, device)
91
92
93
def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
94
# YOLOv5-xlarge model https://github.com/ultralytics/yolov5
95
return _create('yolov5x', pretrained, channels, classes, autoshape, verbose, device)
96
97
98
def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
99
# YOLOv5-nano-P6 model https://github.com/ultralytics/yolov5
100
return _create('yolov5n6', pretrained, channels, classes, autoshape, verbose, device)
101
102
103
def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
104
# YOLOv5-small-P6 model https://github.com/ultralytics/yolov5
105
return _create('yolov5s6', pretrained, channels, classes, autoshape, verbose, device)
106
107
108
def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
109
# YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5
110
return _create('yolov5m6', pretrained, channels, classes, autoshape, verbose, device)
111
112
113
def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
114
# YOLOv5-large-P6 model https://github.com/ultralytics/yolov5
115
return _create('yolov5l6', pretrained, channels, classes, autoshape, verbose, device)
116
117
118
def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
119
# YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5
120
return _create('yolov5x6', pretrained, channels, classes, autoshape, verbose, device)
121
122
123
if __name__ == '__main__':
124
model = _create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) # pretrained
125
# model = custom(path='path/to/model.pt') # custom
126
127
# Verify inference
128
from pathlib import Path
129
130
import cv2
131
import numpy as np
132
from PIL import Image
133
134
imgs = ['data/images/zidane.jpg', # filename
135
Path('data/images/zidane.jpg'), # Path
136
'https://ultralytics.com/images/zidane.jpg', # URI
137
cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV
138
Image.open('data/images/bus.jpg'), # PIL
139
np.zeros((320, 640, 3))] # numpy
140
141
results = model(imgs, size=320) # batched inference
142
results.print()
143
results.save()
144
145