"""
Experimental modules
"""
import math
import numpy as np
import torch
import torch.nn as nn
from models.common import Conv
from utils.downloads import attempt_download
class CrossConv(nn.Module):
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
super().__init__()
c_ = int(c2 * e)
self.cv1 = Conv(c1, c_, (1, k), (1, s))
self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
self.add = shortcut and c1 == c2
def forward(self, x):
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
class Sum(nn.Module):
def __init__(self, n, weight=False):
super().__init__()
self.weight = weight
self.iter = range(n - 1)
if weight:
self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True)
def forward(self, x):
y = x[0]
if self.weight:
w = torch.sigmoid(self.w) * 2
for i in self.iter:
y = y + x[i + 1] * w[i]
else:
for i in self.iter:
y = y + x[i + 1]
return y
class MixConv2d(nn.Module):
def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
super().__init__()
n = len(k)
if equal_ch:
i = torch.linspace(0, n - 1E-6, c2).floor()
c_ = [(i == g).sum() for g in range(n)]
else:
b = [c2] + [0] * n
a = np.eye(n + 1, n, k=-1)
a -= np.roll(a, 1, axis=1)
a *= np.array(k) ** 2
a[0] = 1
c_ = np.linalg.lstsq(a, b, rcond=None)[0].round()
self.m = nn.ModuleList(
[nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)])
self.bn = nn.BatchNorm2d(c2)
self.act = nn.SiLU()
def forward(self, x):
return self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
class Ensemble(nn.ModuleList):
def __init__(self):
super().__init__()
def forward(self, x, augment=False, profile=False, visualize=False):
y = []
for module in self:
y.append(module(x, augment, profile, visualize)[0])
y = torch.cat(y, 1)
return y, None
def attempt_load(weights, map_location=None, inplace=True, fuse=True):
from models.yolo import Detect, Model
model = Ensemble()
for w in weights if isinstance(weights, list) else [weights]:
ckpt = torch.load(attempt_download(w), map_location=map_location)
if fuse:
model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval())
else:
model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().eval())
for m in model.modules():
if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model]:
m.inplace = inplace
if type(m) is Detect:
if not isinstance(m.anchor_grid, list):
delattr(m, 'anchor_grid')
setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl)
elif type(m) is Conv:
m._non_persistent_buffers_set = set()
if len(model) == 1:
return model[-1]
else:
print(f'Ensemble created with {weights}\n')
for k in ['names']:
setattr(model, k, getattr(model[-1], k))
model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride
return model