Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Path: blob/master/test.txt
Views: 475
conf-0.051Class Images Labels P R [email protected] [email protected]:.95: 100%|██████████| 663/663 [07:22<00:00, 1.50it/s]2all 5297 123762 0.764 0.691 0.751 0.4883plane 5297 4461 0.937 0.957 0.977 0.7694baseball-diamond 5297 354 0.818 0.808 0.843 0.5455bridge 5297 790 0.717 0.534 0.615 0.3036ground-track-field 5297 212 0.719 0.627 0.677 0.4817small-vehicle 5297 73497 0.718 0.65 0.744 0.3838large-vehicle 5297 10284 0.824 0.785 0.857 0.6429ship 5297 21777 0.9 0.92 0.958 0.68510tennis-court 5297 1515 0.961 0.938 0.969 0.87911basketball-court 5297 287 0.766 0.767 0.836 0.66712storage-tank 5297 4728 0.821 0.659 0.746 0.313soccer-ball-field 5297 241 0.61 0.598 0.613 0.41414roundabout 5297 287 0.73 0.564 0.64 0.30715harbor 5297 4179 0.863 0.831 0.871 0.53116swimming-pool 5297 994 0.762 0.69 0.742 0.36417helicopter 5297 128 0.724 0.664 0.727 0.44518container-crane 5297 28 0.349 0.0714 0.205 0.119Speed: 0.5ms pre-process, 27.7ms inference, 10.3ms NMS per image at shape (8, 3, 1024, 1024)2021conf-0.122Class Images Labels P R [email protected] [email protected]:.95: 100%|██████████| 663/663 [07:09<00:00, 1.54it/s]23all 5297 123762 0.764 0.691 0.756 0.49524plane 5297 4461 0.937 0.957 0.975 0.7725baseball-diamond 5297 354 0.818 0.808 0.843 0.54926bridge 5297 790 0.717 0.534 0.616 0.30827ground-track-field 5297 212 0.719 0.627 0.678 0.48928small-vehicle 5297 73497 0.718 0.65 0.745 0.38629large-vehicle 5297 10284 0.824 0.785 0.857 0.64630ship 5297 21777 0.9 0.92 0.956 0.68631tennis-court 5297 1515 0.961 0.938 0.969 0.8832basketball-court 5297 287 0.766 0.767 0.839 0.67233storage-tank 5297 4728 0.821 0.659 0.746 0.30434soccer-ball-field 5297 241 0.61 0.598 0.619 0.42235roundabout 5297 287 0.73 0.564 0.636 0.3136harbor 5297 4179 0.863 0.831 0.872 0.53737swimming-pool 5297 994 0.762 0.69 0.739 0.36638helicopter 5297 128 0.724 0.664 0.736 0.45439container-crane 5297 28 0.349 0.0714 0.271 0.13840Speed: 0.5ms pre-process, 28.0ms inference, 10.2ms NMS per image at shape (8, 3, 1024, 1024)4142conf-0.1543Class Images Labels P R [email protected] [email protected]:.95: 100%|██████████| 663/663 [08:07<00:00, 1.36it/s]44all 5297 123762 0.764 0.691 0.756 0.49645plane 5297 4461 0.937 0.957 0.975 0.7746baseball-diamond 5297 354 0.818 0.808 0.842 0.5547bridge 5297 790 0.717 0.534 0.615 0.31248ground-track-field 5297 212 0.719 0.627 0.68 0.49549small-vehicle 5297 73497 0.718 0.65 0.744 0.38950large-vehicle 5297 10284 0.824 0.785 0.856 0.64951ship 5297 21777 0.9 0.92 0.954 0.68652tennis-court 5297 1515 0.961 0.938 0.968 0.8853basketball-court 5297 287 0.766 0.767 0.842 0.67654storage-tank 5297 4728 0.821 0.659 0.746 0.30655soccer-ball-field 5297 241 0.61 0.598 0.621 0.42656roundabout 5297 287 0.73 0.564 0.637 0.3157harbor 5297 4179 0.863 0.831 0.871 0.5458swimming-pool 5297 994 0.762 0.69 0.736 0.36759helicopter 5297 128 0.724 0.664 0.741 0.45960container-crane 5297 28 0.349 0.0714 0.268 0.12161Speed: 0.5ms pre-process, 28.9ms inference, 10.0ms NMS per image at shape (8, 3, 1024, 1024)6263conf-0.264Class Images Labels P R [email protected] [email protected]:.95: 100%|██████████| 663/663 [06:40<00:00, 1.66it/s]65all 5297 123762 0.764 0.691 0.756 0.49766plane 5297 4461 0.937 0.957 0.974 0.7767baseball-diamond 5297 354 0.818 0.808 0.841 0.55268bridge 5297 790 0.717 0.534 0.613 0.31569ground-track-field 5297 212 0.719 0.627 0.678 0.49970small-vehicle 5297 73497 0.718 0.65 0.742 0.39271large-vehicle 5297 10284 0.824 0.785 0.855 0.65172ship 5297 21777 0.9 0.92 0.953 0.68773tennis-court 5297 1515 0.961 0.938 0.968 0.88174basketball-court 5297 287 0.766 0.767 0.843 0.67875storage-tank 5297 4728 0.821 0.659 0.743 0.30676soccer-ball-field 5297 241 0.61 0.598 0.627 0.43177roundabout 5297 287 0.73 0.564 0.635 0.31178harbor 5297 4179 0.863 0.831 0.869 0.54179swimming-pool 5297 994 0.762 0.69 0.736 0.36980helicopter 5297 128 0.724 0.664 0.747 0.46581container-crane 5297 28 0.349 0.0714 0.271 0.10582Speed: 0.5ms pre-process, 29.0ms inference, 10.1ms NMS per image at shape (8, 3, 1024, 1024)8384