Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Path: blob/master/train.py
Views: 475
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license1"""2Train a YOLOv5 model on a custom dataset34Usage:5$ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 6406"""7import argparse8import math9import os10import random11import sys12import time13from copy import deepcopy14from datetime import datetime15from pathlib import Path1617import numpy as np18import torch19import torch.distributed as dist20import torch.nn as nn21import yaml22from torch.cuda import amp23from torch.nn.parallel import DistributedDataParallel as DDP24from torch.optim import SGD, Adam, lr_scheduler25from tqdm import tqdm2627FILE = Path(__file__).resolve()28ROOT = FILE.parents[0] # YOLOv5 root directory29if str(ROOT) not in sys.path:30sys.path.append(str(ROOT)) # add ROOT to PATH31ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative3233import val # for end-of-epoch mAP34from models.experimental import attempt_load35from models.yolo import Model36from utils.autoanchor import check_anchors37from utils.autobatch import check_train_batch_size38from utils.callbacks import Callbacks39from utils.datasets import create_dataloader40from utils.downloads import attempt_download41from utils.general import (LOGGER, check_dataset, check_file, check_git_status, check_img_size, check_requirements,42check_suffix, check_yaml, colorstr, get_latest_run, increment_path, init_seeds,43intersect_dicts, labels_to_class_weights, labels_to_image_weights, methods, one_cycle,44print_args, print_mutation, strip_optimizer)45from utils.loggers import Loggers46from utils.loggers.wandb.wandb_utils import check_wandb_resume47from utils.loss import ComputeLoss48from utils.metrics import fitness49from utils.plots import plot_evolve, plot_labels50from utils.torch_utils import EarlyStopping, ModelEMA, de_parallel, select_device, torch_distributed_zero_first5152LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html53RANK = int(os.getenv('RANK', -1))54WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))5556def train(hyp, # path/to/hyp.yaml or hyp dictionary57opt,58device,59callbacks60):61save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \62Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \63opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze6465# Directories66w = save_dir / 'weights' # weights dir67(w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir68last, best = w / 'last.pt', w / 'best.pt'6970# Hyperparameters71if isinstance(hyp, str):72with open(hyp, errors='ignore') as f:73hyp = yaml.safe_load(f) # load hyps dict74LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))7576# Save run settings77if not evolve:78with open(save_dir / 'hyp.yaml', 'w') as f:79yaml.safe_dump(hyp, f, sort_keys=False)80with open(save_dir / 'opt.yaml', 'w') as f:81yaml.safe_dump(vars(opt), f, sort_keys=False)8283# Loggers84data_dict = None85if RANK in [-1, 0]:86loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance87if loggers.wandb:88data_dict = loggers.wandb.data_dict89if resume:90weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp9192# Register actions93for k in methods(loggers):94callbacks.register_action(k, callback=getattr(loggers, k))9596# Config97plots = not evolve # create plots98cuda = device.type != 'cpu'99init_seeds(1 + RANK)100with torch_distributed_zero_first(LOCAL_RANK):101data_dict = data_dict or check_dataset(data) # check if None102train_path, val_path = data_dict['train'], data_dict['val']103nc = 1 if single_cls else int(data_dict['nc']) # number of classes104names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names105assert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}' # check106is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt') # COCO dataset107108# Model109check_suffix(weights, '.pt') # check weights110pretrained = weights.endswith('.pt')111if pretrained:112with torch_distributed_zero_first(LOCAL_RANK):113weights = attempt_download(weights) # download if not found locally114ckpt = torch.load(weights, map_location=device) # load checkpoint115model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create116exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys117csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32118csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect119model.load_state_dict(csd, strict=False) # load120LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report121else:122model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create123124# Freeze125freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freeze126for k, v in model.named_parameters():127v.requires_grad = True # train all layers128if any(x in k for x in freeze):129LOGGER.info(f'freezing {k}')130v.requires_grad = False131132# Image size133gs = max(int(model.stride.max()), 32) # grid size (max stride)134imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple135136# Batch size137if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size138batch_size = check_train_batch_size(model, imgsz)139loggers.on_params_update({"batch_size": batch_size})140141# Optimizer142nbs = 64 # nominal batch size143accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing144hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay145LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}")146147g0, g1, g2 = [], [], [] # optimizer parameter groups148for v in model.modules():149if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias150g2.append(v.bias)151if isinstance(v, nn.BatchNorm2d): # weight (no decay)152g0.append(v.weight)153elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): # weight (with decay)154g1.append(v.weight)155156if opt.adam:157optimizer = Adam(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum158else:159optimizer = SGD(g0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)160161optimizer.add_param_group({'params': g1, 'weight_decay': hyp['weight_decay']}) # add g1 with weight_decay162optimizer.add_param_group({'params': g2}) # add g2 (biases)163LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups "164f"{len(g0)} weight, {len(g1)} weight (no decay), {len(g2)} bias")165del g0, g1, g2166167# Scheduler168if opt.linear_lr:169lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear170else:171lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']172scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs)173174# EMA175ema = ModelEMA(model) if RANK in [-1, 0] else None176177# Resume178start_epoch, best_fitness = 0, 0.0179if pretrained:180# Optimizer181if ckpt['optimizer'] is not None:182optimizer.load_state_dict(ckpt['optimizer'])183best_fitness = ckpt['best_fitness']184185# EMA186if ema and ckpt.get('ema'):187ema.ema.load_state_dict(ckpt['ema'].float().state_dict())188ema.updates = ckpt['updates']189190# Epochs191start_epoch = ckpt['epoch'] + 1192if resume:193assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.'194if epochs < start_epoch:195LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.")196epochs += ckpt['epoch'] # finetune additional epochs197198del ckpt, csd199200# DP mode201if cuda and RANK == -1 and torch.cuda.device_count() > 1:202LOGGER.warning('WARNING: DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n'203'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.')204model = torch.nn.DataParallel(model)205206# SyncBatchNorm207if opt.sync_bn and cuda and RANK != -1:208model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)209LOGGER.info('Using SyncBatchNorm()')210211# Trainloader212train_loader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, names, single_cls,213hyp=hyp, augment=True, cache=opt.cache, rect=opt.rect, rank=LOCAL_RANK,214workers=workers, image_weights=opt.image_weights, quad=opt.quad,215prefix=colorstr('train: '), shuffle=True)216mlc = int(np.concatenate(dataset.labels, 0)[:, 0].max()) # max label class217nb = len(train_loader) # number of batches218assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'219220# Process 0221if RANK in [-1, 0]:222val_loader = create_dataloader(val_path, imgsz, batch_size // WORLD_SIZE * 2, gs, names, single_cls,223hyp=hyp, cache=None if noval else opt.cache, rect=True, rank=-1,224workers=workers, pad=0.5,225prefix=colorstr('val: '))[0]226227if not resume:228labels = np.concatenate(dataset.labels, 0) # labels(array): (all_images_gt_num, [cls_id, poly])229# c = torch.tensor(labels[:, 0]) # classes230# cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency231# model._initialize_biases(cf.to(device))232if plots:233plot_labels(labels, names, save_dir, imgsz)234235# Anchors236if not opt.noautoanchor:237check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)238model.half().float() # pre-reduce anchor precision239240callbacks.run('on_pretrain_routine_end')241242# DDP mode243if cuda and RANK != -1:244model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)245246# Model attributes247nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps)248hyp['box'] *= 3 / nl # scale to layers249hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers250hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers251hyp['theta'] *= 3 / nl252hyp['label_smoothing'] = opt.label_smoothing253model.nc = nc # attach number of classes to model254model.hyp = hyp # attach hyperparameters to model255model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights256model.names = names257258# Start training259t0 = time.time()260nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations)261# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training262last_opt_step = -1263maps = np.zeros(nc) # mAP per class264results = (0, 0, 0, 0, 0, 0, 0, 0) # P, R, [email protected], [email protected], val_loss(box, obj, cls, theta)265scheduler.last_epoch = start_epoch - 1 # do not move266scaler = amp.GradScaler(enabled=cuda)267stopper = EarlyStopping(patience=opt.patience)268compute_loss = ComputeLoss(model) # init loss class269LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'270f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'271f"Logging results to {colorstr('bold', save_dir)}\n"272f'Starting training for {epochs} epochs...')273for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------274model.train()275276# Update image weights (optional, single-GPU only)277if opt.image_weights:278cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights279iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights280dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx281282# Update mosaic border (optional)283# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)284# dataset.mosaic_border = [b - imgsz, -b] # height, width borders285286# mloss = torch.zeros(3, device=device) # mean losses287mloss = torch.zeros(4, device=device) # mean losses288if RANK != -1:289train_loader.sampler.set_epoch(epoch)290pbar = enumerate(train_loader)291# LOGGER.info(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size'))292LOGGER.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'theta', 'labels', 'img_size'))293if RANK in [-1, 0]:294pbar = tqdm(pbar, total=nb, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar295optimizer.zero_grad()296for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------297ni = i + nb * epoch # number integrated batches (since train start)298imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0299300# Warmup301if ni <= nw:302xi = [0, nw] # x interp303# compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)304accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())305for j, x in enumerate(optimizer.param_groups):306# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0307x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])308if 'momentum' in x:309x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])310311# Multi-scale312if opt.multi_scale and not opt.rect:313sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size314sf = sz / max(imgs.shape[2:]) # scale factor , img (tensor): (b, 3, height, width)315if sf != 1:316ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple) [h_new, w_new]317label_ratio = float(ns[0]) / imgs.shape[2]318imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)319targets[:, 2:6] *= label_ratio # targets (tensor): (n_targets, [img_index clsid cx cy l s theta gaussian_θ_labels])320321322# Forward323with amp.autocast(enabled=cuda):324pred = model(imgs) # forward325loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size326if RANK != -1:327loss *= WORLD_SIZE # gradient averaged between devices in DDP mode328if opt.quad:329loss *= 4.330331# Backward332scaler.scale(loss).backward()333334# Optimize335if ni - last_opt_step >= accumulate:336scaler.step(optimizer) # optimizer.step337scaler.update()338optimizer.zero_grad()339if ema:340ema.update(model)341last_opt_step = ni342343# Log344if RANK in [-1, 0]:345mloss = (mloss * i + loss_items) / (i + 1) # update mean losses346mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)347# pbar.set_description(('%10s' * 2 + '%10.4g' * 5) % (348pbar.set_description(('%10s' * 2 + '%10.4g' * 6) % (349f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))350callbacks.run('on_train_batch_end', ni, model, imgs, targets, paths, plots, opt.sync_bn)351# end batch ------------------------------------------------------------------------------------------------352353# Scheduler354lr = [x['lr'] for x in optimizer.param_groups] # for loggers355scheduler.step()356357if RANK in [-1, 0]:358# mAP359callbacks.run('on_train_epoch_end', epoch=epoch)360ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])361final_epoch = (epoch + 1 == epochs) or stopper.possible_stop362if not noval or final_epoch: # Calculate mAP363results, maps, _ = val.run(data_dict,364batch_size=batch_size // WORLD_SIZE * 2,365imgsz=imgsz,366model=ema.ema,367single_cls=single_cls,368dataloader=val_loader,369save_dir=save_dir,370plots=False,371callbacks=callbacks,372compute_loss=compute_loss)373374# Update best mAP375fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, [email protected], [email protected]]376if fi > best_fitness:377best_fitness = fi378log_vals = list(mloss) + list(results) + lr379callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)380381# Save model382if (not nosave) or (final_epoch and not evolve): # if save383ckpt = {'epoch': epoch,384'best_fitness': best_fitness,385'model': deepcopy(de_parallel(model)).half(),386'ema': deepcopy(ema.ema).half(),387'updates': ema.updates,388'optimizer': optimizer.state_dict(),389'wandb_id': loggers.wandb.wandb_run.id if loggers.wandb else None,390'date': datetime.now().isoformat()}391392# Save last, best and delete393torch.save(ckpt, last)394if best_fitness == fi:395torch.save(ckpt, best)396if (epoch > 0) and (opt.save_period > 0) and (epoch % opt.save_period == 0):397torch.save(ckpt, w / f'epoch{epoch}.pt')398del ckpt399callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)400401# Stop Single-GPU402if RANK == -1 and stopper(epoch=epoch, fitness=fi):403break404405# Stop DDP TODO: known issues shttps://github.com/ultralytics/yolov5/pull/4576406# stop = stopper(epoch=epoch, fitness=fi)407# if RANK == 0:408# dist.broadcast_object_list([stop], 0) # broadcast 'stop' to all ranks409410# Stop DPP411# with torch_distributed_zero_first(RANK):412# if stop:413# break # must break all DDP ranks414415# end epoch ----------------------------------------------------------------------------------------------------416# end training -----------------------------------------------------------------------------------------------------417if RANK in [-1, 0]:418LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')419for f in last, best:420if f.exists():421strip_optimizer(f) # strip optimizers422if f is best:423LOGGER.info(f'\nValidating {f}...')424results, _, _ = val.run(data_dict,425batch_size=batch_size // WORLD_SIZE * 2,426imgsz=imgsz,427model=attempt_load(f, device).half(),428iou_thres=0.65 if is_coco else 0.60, # best pycocotools results at 0.65429single_cls=single_cls,430dataloader=val_loader,431save_dir=save_dir,432save_json=is_coco,433verbose=True,434plots=True,435callbacks=callbacks,436compute_loss=compute_loss) # val best model with plots437if is_coco:438callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)439440callbacks.run('on_train_end', last, best, plots, epoch, results)441LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")442443torch.cuda.empty_cache()444return results445446447def parse_opt(known=False):448parser = argparse.ArgumentParser()449parser.add_argument('--weights', type=str, default=ROOT / 'weights/yolov5n.pt', help='initial weights path')450parser.add_argument('--cfg', type=str, default='', help='model.yaml path')451parser.add_argument('--data', type=str, default=ROOT / 'data/DroneVehicle_poly.yaml', help='dataset.yaml path')452parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/obb/hyp.finetune_dota.yaml', help='hyperparameters path')453parser.add_argument('--epochs', type=int, default=5)454parser.add_argument('--batch-size', type=int, default=128, help='total batch size for all GPUs, -1 for autobatch')455parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=840, help='train, val image size (pixels)')456parser.add_argument('--rect', action='store_true', help='rectangular training')457parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')458parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')459parser.add_argument('--noval', action='store_true', help='only validate final epoch')460parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')461parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')462parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')463parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')464parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')465parser.add_argument('--device', default='1', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')466parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')467parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')468parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')469parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')470parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')471parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')472parser.add_argument('--name', default='exp', help='save to project/name')473parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')474parser.add_argument('--quad', action='store_true', help='quad dataloader')475parser.add_argument('--linear-lr', action='store_true', help='linear LR')476parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')477parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')478parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')479parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')480parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')481482# Weights & Biases arguments483parser.add_argument('--entity', default=None, help='W&B: Entity')484parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='W&B: Upload data, "val" option')485parser.add_argument('--bbox_interval', type=int, default=-1, help='W&B: Set bounding-box image logging interval')486parser.add_argument('--artifact_alias', type=str, default='latest', help='W&B: Version of dataset artifact to use')487488opt = parser.parse_known_args()[0] if known else parser.parse_args()489return opt490491492def main(opt, callbacks=Callbacks()):493# Checks494if RANK in [-1, 0]:495print_args(FILE.stem, opt)496check_git_status()497check_requirements(exclude=['thop'])498499# Resume500if opt.resume and not check_wandb_resume(opt) and not opt.evolve: # resume an interrupted run501ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path502assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'503with open(Path(ckpt).parent.parent / 'opt.yaml', errors='ignore') as f:504opt = argparse.Namespace(**yaml.safe_load(f)) # replace505opt.cfg, opt.weights, opt.resume = '', ckpt, True # reinstate506LOGGER.info(f'Resuming training from {ckpt}')507else:508opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \509check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) # checks510assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'511if opt.evolve:512opt.project = str(ROOT / 'runs/evolve')513opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume514opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))515516# DDP mode517device = select_device(opt.device, batch_size=opt.batch_size)518if LOCAL_RANK != -1:519assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'520assert opt.batch_size % WORLD_SIZE == 0, '--batch-size must be multiple of CUDA device count'521assert not opt.image_weights, '--image-weights argument is not compatible with DDP training'522assert not opt.evolve, '--evolve argument is not compatible with DDP training'523torch.cuda.set_device(LOCAL_RANK)524device = torch.device('cuda', LOCAL_RANK)525dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")526527# Train528if not opt.evolve:529train(opt.hyp, opt, device, callbacks)530if WORLD_SIZE > 1 and RANK == 0:531LOGGER.info('Destroying process group... ')532dist.destroy_process_group()533534# Evolve hyperparameters (optional)535else:536# Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)537meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)538'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)539'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1540'weight_decay': (1, 0.0, 0.001), # optimizer weight decay541'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)542'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum543'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr544'box': (1, 0.02, 0.2), # box loss gain545'cls': (1, 0.2, 4.0), # cls loss gain546'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight547'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)548'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight549'iou_t': (0, 0.1, 0.7), # IoU training threshold550'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold551'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)552'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)553'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)554'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)555'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)556'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)557'translate': (1, 0.0, 0.9), # image translation (+/- fraction)558'scale': (1, 0.0, 0.9), # image scale (+/- gain)559'shear': (1, 0.0, 10.0), # image shear (+/- deg)560'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001561'flipud': (1, 0.0, 1.0), # image flip up-down (probability)562'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)563'mosaic': (1, 0.0, 1.0), # image mixup (probability)564'mixup': (1, 0.0, 1.0), # image mixup (probability)565'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability)566567with open(opt.hyp, errors='ignore') as f:568hyp = yaml.safe_load(f) # load hyps dict569if 'anchors' not in hyp: # anchors commented in hyp.yaml570hyp['anchors'] = 3571opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch572# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices573evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'574if opt.bucket:575os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {save_dir}') # download evolve.csv if exists576577for _ in range(opt.evolve): # generations to evolve578if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate579# Select parent(s)580parent = 'single' # parent selection method: 'single' or 'weighted'581x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1)582n = min(5, len(x)) # number of previous results to consider583x = x[np.argsort(-fitness(x))][:n] # top n mutations584w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0)585if parent == 'single' or len(x) == 1:586# x = x[random.randint(0, n - 1)] # random selection587x = x[random.choices(range(n), weights=w)[0]] # weighted selection588elif parent == 'weighted':589x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination590591# Mutate592mp, s = 0.8, 0.2 # mutation probability, sigma593npr = np.random594npr.seed(int(time.time()))595g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1596ng = len(meta)597v = np.ones(ng)598while all(v == 1): # mutate until a change occurs (prevent duplicates)599v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)600for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)601hyp[k] = float(x[i + 7] * v[i]) # mutate602603# Constrain to limits604for k, v in meta.items():605hyp[k] = max(hyp[k], v[1]) # lower limit606hyp[k] = min(hyp[k], v[2]) # upper limit607hyp[k] = round(hyp[k], 5) # significant digits608609# Train mutation610results = train(hyp.copy(), opt, device, callbacks)611612# Write mutation results613print_mutation(results, hyp.copy(), save_dir, opt.bucket)614615# Plot results616plot_evolve(evolve_csv)617LOGGER.info(f'Hyperparameter evolution finished\n'618f"Results saved to {colorstr('bold', save_dir)}\n"619f'Use best hyperparameters example: $ python train.py --hyp {evolve_yaml}')620621622def run(**kwargs):623# Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')624opt = parse_opt(True)625for k, v in kwargs.items():626setattr(opt, k, v)627main(opt)628629630if __name__ == "__main__":631opt = parse_opt()632main(opt)633634635