CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
hukaixuan19970627

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

GitHub Repository: hukaixuan19970627/yolov5_obb
Path: blob/master/utils/augmentations.py
Views: 475
1
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
"""
3
Image augmentation functions
4
"""
5
6
import math
7
import random
8
9
import cv2
10
import numpy as np
11
12
from utils.general import LOGGER, check_version, colorstr, resample_segments, segment2box
13
from utils.metrics import bbox_ioa
14
from utils.rboxs_utils import poly_filter
15
16
17
class Albumentations:
18
# YOLOv5 Albumentations class (optional, only used if package is installed)
19
def __init__(self):
20
self.transform = None
21
try:
22
import albumentations as A
23
check_version(A.__version__, '1.0.3', hard=True) # version requirement
24
25
self.transform = A.Compose([
26
A.Blur(p=0.01),
27
A.MedianBlur(p=0.01),
28
A.ToGray(p=0.01),
29
A.CLAHE(p=0.01),
30
A.RandomBrightnessContrast(p=0.0),
31
A.RandomGamma(p=0.0),
32
A.ImageCompression(quality_lower=75, p=0.0)],
33
bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels']))
34
35
LOGGER.info(colorstr('albumentations: ') + ', '.join(f'{x}' for x in self.transform.transforms if x.p))
36
except ImportError: # package not installed, skip
37
pass
38
except Exception as e:
39
LOGGER.info(colorstr('albumentations: ') + f'{e}')
40
41
def __call__(self, im, labels, p=1.0):
42
if self.transform and random.random() < p:
43
new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0]) # transformed
44
im, labels = new['image'], np.array([[c, *b] for c, b in zip(new['class_labels'], new['bboxes'])])
45
return im, labels
46
47
48
def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5):
49
# HSV color-space augmentation
50
if hgain or sgain or vgain:
51
r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
52
hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV))
53
dtype = im.dtype # uint8
54
55
x = np.arange(0, 256, dtype=r.dtype)
56
lut_hue = ((x * r[0]) % 180).astype(dtype)
57
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
58
lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
59
60
im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
61
cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im) # no return needed
62
63
64
def hist_equalize(im, clahe=True, bgr=False):
65
# Equalize histogram on BGR image 'im' with im.shape(n,m,3) and range 0-255
66
yuv = cv2.cvtColor(im, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
67
if clahe:
68
c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
69
yuv[:, :, 0] = c.apply(yuv[:, :, 0])
70
else:
71
yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram
72
return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB
73
74
75
def replicate(im, labels):
76
# Replicate labels
77
h, w = im.shape[:2]
78
boxes = labels[:, 1:].astype(int)
79
x1, y1, x2, y2 = boxes.T
80
s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
81
for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
82
x1b, y1b, x2b, y2b = boxes[i]
83
bh, bw = y2b - y1b, x2b - x1b
84
yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
85
x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
86
im[y1a:y2a, x1a:x2a] = im[y1b:y2b, x1b:x2b] # im4[ymin:ymax, xmin:xmax]
87
labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
88
89
return im, labels
90
91
92
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
93
"""
94
Resize and pad image while meeting stride-multiple constraints
95
Returns:
96
im (array): (height, width, 3)
97
ratio (array): [w_ratio, h_ratio]
98
(dw, dh) (array): [w_padding h_padding]
99
"""
100
shape = im.shape[:2] # current shape [height, width]
101
if isinstance(new_shape, int): # [h_rect, w_rect]
102
new_shape = (new_shape, new_shape)
103
104
# Scale ratio (new / old)
105
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
106
if not scaleup: # only scale down, do not scale up (for better val mAP)
107
r = min(r, 1.0)
108
109
# Compute padding
110
ratio = r, r # wh ratios
111
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) # w h
112
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
113
if auto: # minimum rectangle
114
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
115
elif scaleFill: # stretch
116
dw, dh = 0.0, 0.0
117
new_unpad = (new_shape[1], new_shape[0]) # [w h]
118
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # [w_ratio, h_ratio]
119
120
dw /= 2 # divide padding into 2 sides
121
dh /= 2
122
123
if shape[::-1] != new_unpad: # resize
124
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
125
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
126
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
127
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
128
return im, ratio, (dw, dh)
129
130
131
def random_perspective(im, targets=(), segments=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0,
132
border=(0, 0)):
133
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10))
134
# targets = [cls, xyxyxyxy]
135
136
height = im.shape[0] + border[0] * 2 # shape(h,w,c)
137
width = im.shape[1] + border[1] * 2
138
139
# Center
140
C = np.eye(3)
141
C[0, 2] = -im.shape[1] / 2 # x translation (pixels)
142
C[1, 2] = -im.shape[0] / 2 # y translation (pixels)
143
144
# Perspective
145
P = np.eye(3)
146
P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
147
P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
148
149
# Rotation and Scale
150
R = np.eye(3)
151
a = random.uniform(-degrees, degrees)
152
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
153
s = random.uniform(1 - scale, 1 + scale)
154
# s = 2 ** random.uniform(-scale, scale)
155
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
156
157
# Shear
158
S = np.eye(3)
159
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
160
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
161
162
# Translation
163
T = np.eye(3)
164
T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
165
T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
166
167
# Combined rotation matrix
168
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
169
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
170
if perspective:
171
im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114))
172
else: # affine
173
im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
174
175
# Visualize
176
# import matplotlib.pyplot as plt
177
# ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
178
# ax[0].imshow(im[:, :, ::-1]) # base
179
# ax[1].imshow(im2[:, :, ::-1]) # warped
180
181
# Transform label coordinates
182
n = len(targets)
183
if n:
184
use_segments = any(x.any() for x in segments)
185
new = np.zeros((n, 4))
186
if use_segments: # warp segments
187
segments = resample_segments(segments) # upsample
188
for i, segment in enumerate(segments):
189
xy = np.ones((len(segment), 3))
190
xy[:, :2] = segment
191
xy = xy @ M.T # transform
192
xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine
193
194
# clip
195
new[i] = segment2box(xy, width, height)
196
197
else: # warp boxes
198
xy = np.ones((n * 4, 3))
199
# xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
200
xy[:, :2] = targets[:, 1:].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
201
xy = xy @ M.T # transform
202
xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine
203
204
# # create new boxes
205
# x = xy[:, [0, 2, 4, 6]]
206
# y = xy[:, [1, 3, 5, 7]]
207
# new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
208
209
# # clip
210
# new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
211
# new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
212
# clip boxes 不启用,保留预测完整物体的能力
213
214
# filter candidates
215
# i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10)
216
# targets = targets[i]
217
# targets[:, 1:5] = new[i]
218
targets_mask = poly_filter(polys=xy, h=height, w=width)
219
targets[:, 1:] = xy
220
targets = targets[targets_mask]
221
222
return im, targets
223
224
225
def copy_paste(im, labels, segments, p=0.5):
226
# Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
227
n = len(segments)
228
if p and n:
229
h, w, c = im.shape # height, width, channels
230
im_new = np.zeros(im.shape, np.uint8)
231
for j in random.sample(range(n), k=round(p * n)):
232
l, s = labels[j], segments[j]
233
box = w - l[3], l[2], w - l[1], l[4]
234
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
235
if (ioa < 0.30).all(): # allow 30% obscuration of existing labels
236
labels = np.concatenate((labels, [[l[0], *box]]), 0)
237
segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
238
cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED)
239
240
result = cv2.bitwise_and(src1=im, src2=im_new)
241
result = cv2.flip(result, 1) # augment segments (flip left-right)
242
i = result > 0 # pixels to replace
243
# i[:, :] = result.max(2).reshape(h, w, 1) # act over ch
244
im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug
245
246
return im, labels, segments
247
248
249
def cutout(im, labels, p=0.5):
250
# Applies image cutout augmentation https://arxiv.org/abs/1708.04552
251
if random.random() < p:
252
h, w = im.shape[:2]
253
scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
254
for s in scales:
255
mask_h = random.randint(1, int(h * s)) # create random masks
256
mask_w = random.randint(1, int(w * s))
257
258
# box
259
xmin = max(0, random.randint(0, w) - mask_w // 2)
260
ymin = max(0, random.randint(0, h) - mask_h // 2)
261
xmax = min(w, xmin + mask_w)
262
ymax = min(h, ymin + mask_h)
263
264
# apply random color mask
265
im[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
266
267
# return unobscured labels
268
if len(labels) and s > 0.03:
269
box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
270
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
271
labels = labels[ioa < 0.60] # remove >60% obscured labels
272
273
return labels
274
275
276
def mixup(im, labels, im2, labels2):
277
# Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf
278
r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0
279
im = (im * r + im2 * (1 - r)).astype(np.uint8)
280
labels = np.concatenate((labels, labels2), 0)
281
return im, labels
282
283
284
def box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n)
285
# Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
286
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
287
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
288
ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
289
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates
290
291