"""
Auto-anchor utils
"""
import random
import numpy as np
import torch
import yaml
from tqdm import tqdm
from utils.general import LOGGER, colorstr, emojis
from utils.rboxs_utils import pi, poly2rbox, regular_theta
import cv2
PREFIX = colorstr('AutoAnchor: ')
def check_anchor_order(m):
a = m.anchors.prod(-1).view(-1)
da = a[-1] - a[0]
ds = m.stride[-1] - m.stride[0]
if da.sign() != ds.sign():
LOGGER.info(f'{PREFIX}Reversing anchor order')
m.anchors[:] = m.anchors.flip(0)
def check_anchors(dataset, model, thr=4.0, imgsz=640):
"""
Args:
Dataset.labels (list): n_imgs * array(num_gt_perimg, [cls_id, poly])
Dataset.shapes (array): (n_imgs, [ori_img_width, ori_img_height])
Returns:
"""
m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1]
min_ratios = imgsz / dataset.shapes.max(1, keepdims=True)
scales = np.random.uniform(0.9, 1.1, size=(min_ratios.shape[0], 1))
ls_edges = []
for ratio, labels in zip(min_ratios * scales, dataset.labels):
rboxes = poly2rbox(labels[:, 1:] * ratio)
if len(rboxes):
ls_edges.append(rboxes[:, 2:4])
ls_edges = torch.tensor(np.concatenate(ls_edges)).float()
ls_edges = ls_edges[(ls_edges >= 5.0).any(1)]
def metric(k):
r = ls_edges[:, None] / k[None]
x = torch.min(r, 1 / r).min(2)[0]
best = x.max(1)[0]
aat = (x > 1 / thr).float().sum(1).mean()
bpr = (best > 1 / thr).float().mean()
return bpr, aat
anchors = m.anchors.clone() * m.stride.to(m.anchors.device).view(-1, 1, 1)
bpr, aat = metric(anchors.cpu().view(-1, 2))
s = f'\n{PREFIX}{aat:.2f} anchors/target, {bpr:.3f} Best Possible Recall (BPR). '
if bpr > 0.98:
LOGGER.info(emojis(f'{s}Current anchors are a good fit to dataset ✅'))
else:
LOGGER.info(emojis(f'{s}Anchors are a poor fit to dataset ⚠️, attempting to improve...'))
na = m.anchors.numel() // 2
try:
anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
except Exception as e:
LOGGER.info(f'{PREFIX}ERROR: {e}')
new_bpr = metric(anchors)[0]
if new_bpr > bpr:
anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
m.anchors[:] = anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1)
check_anchor_order(m)
LOGGER.info(f'{PREFIX}New anchors saved to model. Update model *.yaml to use these anchors in the future.')
else:
LOGGER.info(f'{PREFIX}Original anchors better than new anchors. Proceeding with original anchors.')
def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
""" Creates kmeans-evolved anchors from training dataset
Arguments:
dataset: path to data.yaml, or a loaded dataset
n: number of anchors
img_size: image size used for training
thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
gen: generations to evolve anchors using genetic algorithm
verbose: print all results
Return:
k: kmeans evolved anchors
Usage:
from utils.autoanchor import *; _ = kmean_anchors()
"""
from scipy.cluster.vq import kmeans
thr = 1 / thr
def metric(k, wh):
r = wh[:, None] / k[None]
x = torch.min(r, 1 / r).min(2)[0]
return x, x.max(1)[0]
def anchor_fitness(k):
_, best = metric(torch.tensor(k, dtype=torch.float32), ls_edges)
return (best * (best > thr).float()).mean()
def print_results(k, verbose=True):
k = k[np.argsort(k.prod(1))]
x, best = metric(k, ls_edges0)
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n
s = f'{PREFIX}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr\n' \
f'{PREFIX}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' \
f'past_thr={x[x > thr].mean():.3f}-mean: '
for i, x in enumerate(k):
s += '%i,%i, ' % (round(x[0]), round(x[1]))
if verbose:
LOGGER.info(s[:-2])
return k
if isinstance(dataset, str):
with open(dataset, errors='ignore') as f:
data_dict = yaml.safe_load(f)
from utils.datasets import LoadImagesAndLabels
dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
min_ratios = img_size / dataset.shapes.max(1, keepdims=True)
ls_edges0 = []
for ratio, labels in zip(min_ratios, dataset.labels):
rboxes = poly2rbox(labels[:, 1:] * ratio)
if len(rboxes):
ls_edges0.append(rboxes[:, 2:4])
ls_edges0 = np.concatenate(ls_edges0)
i = (ls_edges0 < 5.0).any(1).sum()
if i:
LOGGER.info(f'{PREFIX}WARNING: Extremely small objects found. {i} of {len(ls_edges0)} poly labels are < 5 pixels in size.')
ls_edges = ls_edges0[(ls_edges0 >= 5.0).any(1)]
LOGGER.info(f'{PREFIX}Running kmeans for {n} anchors on {len(ls_edges)} points...')
s = ls_edges.std(0)
k, dist = kmeans(ls_edges / s, n, iter=30)
assert len(k) == n, f'{PREFIX}ERROR: scipy.cluster.vq.kmeans requested {n} points but returned only {len(k)}'
k *= s
ls_edges = torch.tensor(ls_edges, dtype=torch.float32)
ls_edges0 = torch.tensor(ls_edges0, dtype=torch.float32)
k = print_results(k, verbose=False)
npr = np.random
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1
pbar = tqdm(range(gen), desc=f'{PREFIX}Evolving anchors with Genetic Algorithm:')
for _ in pbar:
v = np.ones(sh)
while (v == 1).all():
v = ((npr.random(sh) < mp) * random.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
kg = (k.copy() * v).clip(min=2.0)
fg = anchor_fitness(kg)
if fg > f:
f, k = fg, kg.copy()
pbar.desc = f'{PREFIX}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
if verbose:
print_results(k, verbose)
return print_results(k)