"""
Auto-batch utils
"""
from copy import deepcopy
import numpy as np
import torch
from torch.cuda import amp
from utils.general import LOGGER, colorstr
from utils.torch_utils import profile
def check_train_batch_size(model, imgsz=640):
with amp.autocast():
return autobatch(deepcopy(model).train(), imgsz)
def autobatch(model, imgsz=640, fraction=0.9, batch_size=16):
prefix = colorstr('AutoBatch: ')
LOGGER.info(f'{prefix}Computing optimal batch size for --imgsz {imgsz}')
device = next(model.parameters()).device
if device.type == 'cpu':
LOGGER.info(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}')
return batch_size
d = str(device).upper()
properties = torch.cuda.get_device_properties(device)
t = properties.total_memory / 1024 ** 3
r = torch.cuda.memory_reserved(device) / 1024 ** 3
a = torch.cuda.memory_allocated(device) / 1024 ** 3
f = t - (r + a)
LOGGER.info(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free')
batch_sizes = [1, 2, 4, 8, 16]
try:
img = [torch.zeros(b, 3, imgsz, imgsz) for b in batch_sizes]
y = profile(img, model, n=3, device=device)
except Exception as e:
LOGGER.warning(f'{prefix}{e}')
y = [x[2] for x in y if x]
batch_sizes = batch_sizes[:len(y)]
p = np.polyfit(batch_sizes, y, deg=1)
b = int((f * fraction - p[1]) / p[0])
LOGGER.info(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%)')
return b