CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
hukaixuan19970627

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

GitHub Repository: hukaixuan19970627/yolov5_obb
Path: blob/master/utils/metrics.py
Views: 475
1
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
"""
3
Model validation metrics
4
"""
5
6
import math
7
import warnings
8
from pathlib import Path
9
10
import matplotlib.pyplot as plt
11
import numpy as np
12
import torch
13
14
15
def fitness(x):
16
# Model fitness as a weighted combination of metrics
17
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, [email protected], [email protected]:0.95]
18
return (x[:, :4] * w).sum(1)
19
20
21
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=(), eps=1e-16):
22
""" Compute the average precision, given the recall and precision curves.
23
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
24
# Arguments
25
tp: True positives (nparray, nx1 or nx10).
26
conf: Objectness value from 0-1 (nparray).
27
pred_cls: Predicted object classes (nparray).
28
target_cls: True object classes (nparray).
29
plot: Plot precision-recall curve at [email protected]
30
save_dir: Plot save directory
31
# Returns
32
The average precision as computed in py-faster-rcnn.
33
"""
34
35
# Sort by objectness
36
i = np.argsort(-conf)
37
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
38
39
# Find unique classes
40
unique_classes, nt = np.unique(target_cls, return_counts=True)
41
nc = unique_classes.shape[0] # number of classes, number of detections
42
43
# Create Precision-Recall curve and compute AP for each class
44
px, py = np.linspace(0, 1, 1000), [] # for plotting
45
ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
46
for ci, c in enumerate(unique_classes):
47
i = pred_cls == c
48
n_l = nt[ci] # number of labels
49
n_p = i.sum() # number of predictions
50
51
if n_p == 0 or n_l == 0:
52
continue
53
else:
54
# Accumulate FPs and TPs
55
fpc = (1 - tp[i]).cumsum(0)
56
tpc = tp[i].cumsum(0)
57
58
# Recall
59
recall = tpc / (n_l + eps) # recall curve
60
r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
61
62
# Precision
63
precision = tpc / (tpc + fpc) # precision curve
64
p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score
65
66
# AP from recall-precision curve
67
for j in range(tp.shape[1]):
68
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
69
if plot and j == 0:
70
py.append(np.interp(px, mrec, mpre)) # precision at [email protected]
71
72
# Compute F1 (harmonic mean of precision and recall)
73
f1 = 2 * p * r / (p + r + eps)
74
names = [v for k, v in names.items() if k in unique_classes] # list: only classes that have data
75
names = {i: v for i, v in enumerate(names)} # to dict
76
if plot:
77
plot_pr_curve(px, py, ap, Path(save_dir) / 'PR_curve.png', names)
78
plot_mc_curve(px, f1, Path(save_dir) / 'F1_curve.png', names, ylabel='F1')
79
plot_mc_curve(px, p, Path(save_dir) / 'P_curve.png', names, ylabel='Precision')
80
plot_mc_curve(px, r, Path(save_dir) / 'R_curve.png', names, ylabel='Recall')
81
82
i = f1.mean(0).argmax() # max F1 index
83
p, r, f1 = p[:, i], r[:, i], f1[:, i]
84
tp = (r * nt).round() # true positives
85
fp = (tp / (p + eps) - tp).round() # false positives
86
return tp, fp, p, r, f1, ap, unique_classes.astype('int32')
87
88
89
def compute_ap(recall, precision):
90
""" Compute the average precision, given the recall and precision curves
91
# Arguments
92
recall: The recall curve (list)
93
precision: The precision curve (list)
94
# Returns
95
Average precision, precision curve, recall curve
96
"""
97
98
# Append sentinel values to beginning and end
99
mrec = np.concatenate(([0.0], recall, [1.0]))
100
mpre = np.concatenate(([1.0], precision, [0.0]))
101
102
# Compute the precision envelope
103
mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
104
105
# Integrate area under curve
106
method = 'interp' # methods: 'continuous', 'interp'
107
if method == 'interp':
108
x = np.linspace(0, 1, 101) # 101-point interp (COCO)
109
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
110
else: # 'continuous'
111
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
112
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
113
114
return ap, mpre, mrec
115
116
117
class ConfusionMatrix:
118
# Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
119
def __init__(self, nc, conf=0.25, iou_thres=0.45):
120
self.matrix = np.zeros((nc + 1, nc + 1))
121
self.nc = nc # number of classes
122
self.conf = conf
123
self.iou_thres = iou_thres
124
125
def process_batch(self, detections, labels):
126
"""
127
Return intersection-over-union (Jaccard index) of boxes.
128
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
129
Arguments:
130
detections (Array[N, 6]), x1, y1, x2, y2, conf, class
131
labels (Array[M, 5]), class, x1, y1, x2, y2
132
Returns:
133
None, updates confusion matrix accordingly
134
"""
135
detections = detections[detections[:, 4] > self.conf]
136
gt_classes = labels[:, 0].int()
137
detection_classes = detections[:, 5].int()
138
iou = box_iou(labels[:, 1:], detections[:, :4])
139
140
x = torch.where(iou > self.iou_thres)
141
if x[0].shape[0]:
142
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
143
if x[0].shape[0] > 1:
144
matches = matches[matches[:, 2].argsort()[::-1]]
145
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
146
matches = matches[matches[:, 2].argsort()[::-1]]
147
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
148
else:
149
matches = np.zeros((0, 3))
150
151
n = matches.shape[0] > 0
152
m0, m1, _ = matches.transpose().astype(np.int16)
153
for i, gc in enumerate(gt_classes):
154
j = m0 == i
155
if n and sum(j) == 1:
156
self.matrix[detection_classes[m1[j]], gc] += 1 # correct
157
else:
158
self.matrix[self.nc, gc] += 1 # background FP
159
160
if n:
161
for i, dc in enumerate(detection_classes):
162
if not any(m1 == i):
163
self.matrix[dc, self.nc] += 1 # background FN
164
165
def matrix(self):
166
return self.matrix
167
168
def tp_fp(self):
169
tp = self.matrix.diagonal() # true positives
170
fp = self.matrix.sum(1) - tp # false positives
171
# fn = self.matrix.sum(0) - tp # false negatives (missed detections)
172
return tp[:-1], fp[:-1] # remove background class
173
174
def plot(self, normalize=True, save_dir='', names=()):
175
try:
176
import seaborn as sn
177
178
array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-6) if normalize else 1) # normalize columns
179
array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
180
181
fig = plt.figure(figsize=(12, 9), tight_layout=True)
182
sn.set(font_scale=1.0 if self.nc < 50 else 0.8) # for label size
183
labels = (0 < len(names) < 99) and len(names) == self.nc # apply names to ticklabels
184
with warnings.catch_warnings():
185
warnings.simplefilter('ignore') # suppress empty matrix RuntimeWarning: All-NaN slice encountered
186
sn.heatmap(array, annot=self.nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True,
187
xticklabels=names + ['background FP'] if labels else "auto",
188
yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1))
189
fig.axes[0].set_xlabel('True')
190
fig.axes[0].set_ylabel('Predicted')
191
fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
192
plt.close()
193
except Exception as e:
194
print(f'WARNING: ConfusionMatrix plot failure: {e}')
195
196
def print(self):
197
for i in range(self.nc + 1):
198
print(' '.join(map(str, self.matrix[i])))
199
200
201
def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
202
# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
203
box2 = box2.T
204
205
# Get the coordinates of bounding boxes
206
if x1y1x2y2: # x1, y1, x2, y2 = box1
207
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
208
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
209
else: # transform from xywh to xyxy
210
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
211
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
212
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
213
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
214
215
# Intersection area
216
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
217
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
218
219
# Union Area
220
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
221
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
222
union = w1 * h1 + w2 * h2 - inter + eps
223
224
iou = inter / union
225
if CIoU or DIoU or GIoU:
226
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
227
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
228
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
229
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
230
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
231
(b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared
232
if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
233
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
234
with torch.no_grad():
235
alpha = v / (v - iou + (1 + eps))
236
return iou - (rho2 / c2 + v * alpha) # CIoU
237
else:
238
return iou - rho2 / c2 # DIoU
239
else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
240
c_area = cw * ch + eps # convex area
241
return iou - (c_area - union) / c_area # GIoU
242
else:
243
return iou # IoU
244
245
246
def box_iou(box1, box2):
247
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
248
"""
249
Return intersection-over-union (Jaccard index) of boxes.
250
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
251
Arguments:
252
box1 (Tensor[N, 4])
253
box2 (Tensor[M, 4])
254
Returns:
255
iou (Tensor[N, M]): the NxM matrix containing the pairwise
256
IoU values for every element in boxes1 and boxes2
257
"""
258
259
def box_area(box):
260
# box = 4xn
261
return (box[2] - box[0]) * (box[3] - box[1])
262
263
area1 = box_area(box1.T)
264
area2 = box_area(box2.T)
265
266
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
267
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
268
return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter)
269
270
271
def bbox_ioa(box1, box2, eps=1E-7):
272
""" Returns the intersection over box2 area given box1, box2. Boxes are x1y1x2y2
273
box1: np.array of shape(4)
274
box2: np.array of shape(nx4)
275
returns: np.array of shape(n)
276
"""
277
278
box2 = box2.transpose()
279
280
# Get the coordinates of bounding boxes
281
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
282
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
283
284
# Intersection area
285
inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
286
(np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
287
288
# box2 area
289
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + eps
290
291
# Intersection over box2 area
292
return inter_area / box2_area
293
294
295
def wh_iou(wh1, wh2):
296
# Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
297
wh1 = wh1[:, None] # [N,1,2]
298
wh2 = wh2[None] # [1,M,2]
299
inter = torch.min(wh1, wh2).prod(2) # [N,M]
300
return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter)
301
302
303
# Plots ----------------------------------------------------------------------------------------------------------------
304
305
def plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=()):
306
# Precision-recall curve
307
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
308
py = np.stack(py, axis=1)
309
310
if 0 < len(names) < 21: # display per-class legend if < 21 classes
311
for i, y in enumerate(py.T):
312
ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision)
313
else:
314
ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
315
316
ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f hbb [email protected]' % ap[:, 0].mean())
317
ax.set_xlabel('Recall')
318
ax.set_ylabel('Precision')
319
ax.set_xlim(0, 1)
320
ax.set_ylim(0, 1)
321
plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
322
fig.savefig(Path(save_dir), dpi=250)
323
plt.close()
324
325
326
def plot_mc_curve(px, py, save_dir='mc_curve.png', names=(), xlabel='Confidence', ylabel='Metric'):
327
# Metric-confidence curve
328
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
329
330
if 0 < len(names) < 21: # display per-class legend if < 21 classes
331
for i, y in enumerate(py):
332
ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric)
333
else:
334
ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric)
335
336
y = py.mean(0)
337
ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
338
ax.set_xlabel(xlabel)
339
ax.set_ylabel(ylabel)
340
ax.set_xlim(0, 1)
341
ax.set_ylim(0, 1)
342
plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
343
fig.savefig(Path(save_dir), dpi=250)
344
plt.close()
345
346